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ABSTRACT

View synthesis using depth image-based rendering generates
virtual viewpoints of a 3D scene based on texture and depth
information from a set of available cameras. One of the core
components in view synthesis is image inpainting which per-
forms the reconstruction of areas that were occluded in the
available cameras but are visible from the virtual viewpoint.
Inpainting methods based on Markov random fields (MRFs)
have been shown to be very effective in inpainting large areas
in images. In this paper, we propose a novel MRF-based in-
painting method for multiview video. The proposed method
steers the MRF optimization towards completion from back-
ground to foreground and exploits the available depth infor-
mation in order to avoid bleeding artifacts. The proposed ap-
proach allows for efficiently filling-in large disocclusion ar-
eas and greatly accelerates execution compared to traditional
MRF-based inpainting techniques. The experimental results
show that view synthesis based on the proposed inpainting
method systematically improves performance over the state-
of-the-art in multiview view synthesis. Average PSNR gains
up to 1.88 dB compared to the MPEG View Synthesis Refer-
ence software were observed.

Index Terms— Multiview video, view synthesis, disoc-
clusion inpainting, Markov Random Field

1. INTRODUCTION

The advent of autostereoscopic displays providing horizon-
tal parallax facilitates the visualization and interpretation
of complex data, and opens new opportunities in numerous
domains, such as 3D media creation, management and dis-
tribution, digital signage, medical visualization, augmented
reality, gaming, to name a few. These applications require
the content to be acquired from many viewpoints, raising
many questions related on how to actually record, process
and transmit such data. A major role in this context is played
by view synthesis methods which are being used in order to
generate novel camera viewpoints based on a limited set of
video inputs. View synthesis can be applied for obvious tasks
such as the creation of super-multiview content starting from
a small number of original cameras needed in order to feed

autostereoscopic displays [1-3]. View synthesis has also the
potential to adjust the baseline of stereoscopic video to serve
diverse display devices ranging from mobile devices to large
cinema screens [4]. Furthermore, view synthesis has already
been successfully used in order to create better prediction
signals in 3D video coding systems and thereby improve their
compression performance [5-7].

MPEG-FTYV, an ad-hoc group within the MPEG commu-
nity, recently issued a call for evidence on super-multiview
and free-navigation technologies [8]. The call targets the de-
sign of (i) better compression methods for super-multiview
content in dense but not necessarily linear camera setups, and
(i1) new view synthesis techniques that can handle large and
non-linear camera arrangements. The group also maintains a
Depth Estimation Reference Software (DERS) [9] and View
Synthesis Reference Software (VSRS) [10] representing the
state-of-the-art in the field.

When depth information is available, arbitrary virtual
viewpoints can be generated using depth image-based render-
ing (DIBR) techniques. Using the depth map and the camera
calibration matrices, pixels from known reference cameras
can be projected onto the imaging plane of a desired virtual
camera. However, rendering a virtual viewpoint usually un-
covers a part of the scene that was occluded for some or all
of the reference cameras. The rendered image will therefore
contain holes that need to be concealed in order to provide a
pleasant user experience. In image inpainting, many state-of-
the-art methods exist that are designed to remove unwanted
parts of an image by seamlessly copying existing image struc-
tures in their place [11-14]. However, directly applying these
methods to conceal disoccluded areas usually does not yield
acceptable results. Various extensions of these algorithms
have been investigated, e.g. the classical PatchMatch algo-
rithm [14] has been applied to view synthesis in [15] and the
Markov random field (MRF) -based inpainting method of [13]
was adapted for disocclusion filling in [16, 17]. Other works
focus on graph-based reconstruction techniques [18, 19] or
superpixel segmentation [20].

In this paper, we propose an MRF-based disocclusion fill-
ing method that builds on [13, 16, 17]. The original method
of [13] is designed for image inpainting or texture synthe-
sis. However, even with speed-up enhancements such as fre-



quency domain computations and multi-scale processing, the
method is relatively slow when directly applied for disocclu-
sion inpainting. Moreover, it generates artifacts by bleeding
pixels from foreground objects into the background. In [16],
the method is essentially extended by disabling the edge of the
MREF that lies on the boundary of a foreground object and by
incorporating depth information in the cost function. While
avoiding the bleeding artifact, the method is not stated to have
gained a significant speedup. In [17], an additional extension
is proposed that limits the number of patches that need to be
evaluated per node in the MRF, which greatly reduces compu-
tation time. We further build on these state-of-the-art results.
In this paper we propose to steer the search more in the direc-
tion of the camera movement by constraining the selection of
candidate labels prior to the optimization. Additionally, we
introduce a new easy-to-compute and intuitive priority func-
tion to favor MRF nodes that connect to known background
regions.

2. PROPOSED SYNTHESIS METHOD

2.1. 3D warping

In order to warp known pixels from a real camera viewpoint,
our approach follows the technique that is used in VSRS [10].
First, the depth map of the original view is warped to the vir-
tual camera. In this initial warping step, small cracks are re-
moved using median filtering. Next, each virtual pixel that
has a valid depth value is projected to the reference camera
and assigned to the corresponding pixel value. In this step,
unlike [10], we avoid sampling colors from the edges of fore-
ground objects in order to avoid ghosting artifacts. This is
achieved by performing Canny edge detection on the refer-
ence depth map. If a virtual pixel is warped to an edge pixel,
it is not assigned a color. The reason for this is that depth
values at object boundaries are often ill-defined. Even in
perfect depth maps that are rendered from computer graph-
ics content, these edge-pixels are often a mix of foreground
and background colors. In [10], some morphological opera-
tors are applied to the disocclusion holemap that will be used
for inpainting; however, as shown in the example of Fig. 1,
this is not sufficient to suppress edge pixels that are warped in
the background. Additionally, we also remove spurious pixels
or blobs of pixels that are warped into a large hole. Erosion
and dilation operators are applied to the disocclusion holemap
and pixels that are removed by these operations are marked as
unreliable, so their value will be estimated in the inpainting
stage.

2.2. Disocclusion inpainting

After warping all pixels from one or more reference cameras,
regions with unknown pixel values in the virtual image will
still remain. We will refer to these areas as holes. The holes
can be classified in two categories: the first class consists of
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Fig. 1: Warping edge pixels may produce ghost artifacts (left
[10]), the proposed method (right) avoids this.

very small groups or thin lines of missing pixels while the
holes in the second class are considerably larger. The small
holes originate from the discrete nature of the data and can
be filled-in fairly easily using conventional techniques. How-
ever, inpainting the large holes is challenging. In these re-
gions, a part of the background that is occluded for the refer-
ence camera now becomes visible (disoccluded) from the vir-
tual viewpoint. In VSRS [10], both classes are dealt with by
inpainting using Telea’s method [21]. However, this method
does not work well for large holes, calling for the design of
improved techniques for disocclusion inpainting in multiview
video. In our approach, we roughly separate the small and
large holes by applying a top-hat transform using a circular
structuring element of radius 7 to the binary holemap. Af-
ter this transform, only the small holes remain, and when
subtracted from the full holemap, we obtain the disocclusion
holes.

The separated hole maps of “BigBuckBunny_Flowers”
and “Ballet” are shown in Fig. 2. Small holes are inpainted
using Telea’s method [21], as implemented in OpenCV, while
for the larger holes we propose a patch-based method, as
described in the following section.

2.2.1. MRF-based disocclusion inpainting

In order to faithfully reconstruct disoccluded background re-
gions, we propose a patch-based method. A grid of overlap-
ping patches of size w X w is defined over the image. For
each patch that is not fully known, we aim to fill-in the miss-
ing pixel values in order to obtain a visually pleasing result.
Following the notation of [13], we define an MRF as a set of
nodes V and a set of edges £ that makes up a 4-neighborhood
system. Each node p; can be assigned to be filled in with a
particular patch x; that does not contain any missing pixels.
X represents a vector containing a labeling x; for all p; € V.
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Fig. 2: Holemaps of frame 1 of Ballet (top) and BigBuck-
Bunny_Flowers (bottom)

Fig. 3: A foreground object bleeds into the background using
traditional image inpainting. (Figure taken from [16].)

The energy of the MRF is defined as:

Ex)= Y Vilm)+ > Vij(zi,) (M

pi€V (i,5)€E

where V;(z;) denotes the sum of squared differences (SSD)
between any known pixels in the existing patch at node p; and
the corresponding pixel in the patch that is assigned to fill the
missing pixels. Note that this means that for nodes that have
no known pixels, this term is always 0. Similarly, V;; (z;, z;)
denotes the SSD within the overlap when patches x; and x;
are assigned to nodes p; and p;, respectively.

The solution to the inpainting problem, x*, is then defined
to be the labeling that minimizes this energy:

x* = argmin F(x) 2)

In traditional image inpainting using MRFs, any fully
known w X w size patch that can be extracted from the im-
age is a valid candidate for assignment to any MRF node.
This usually means that all MRF nodes have a number of
potential labels that is proportional to the number of pixels
in the image and this makes the evaluation of all possible

Fig. 4: MRF nodes on the edge of a foreground object are
not allowed to compute their local evidence term V;(+) (red),
while the nodes on the opposite side of the grid are initial-
ized with a Z-bonus of 1 (green) to encourage filling from the
background and avoid the bleeding artifact (Fig. 3).

Fig. 5: The Z-bonus values for the nodes in the same region
of interest as Fig. 4 after the first forward pass of the p-BP
algorithm. Brighter pixels indicate a higher values.

combinations infeasible. However, due to the nature of the
large disocclusion holes, we know that the missing pixels
should belong to the background and, if the camera warp cor-
responds to a horizontal movement, candidate patches should
be searched mainly in the horizontal direction. This greatly
reduces the number of candidate labels per node. Similar to
[16], the nodes around a foreground object are no longer al-
lowed to compute their local evidence V;(x;) in order to avoid
foreground bleeding - see Fig. 3. Unlike [16] we however do
not include an additional penalty on selecting non-adjacent
labels for adjacent nodes. A similar effect is achieved if we
follow the approach of [17] and limit the allowed labels for
each node to only a local window. However, [17] considers a
square 100 x 100 window for this candidate selection while
we want to limit the vertical search so we typically work with
rectangular windows. This ensures that the filling process is
constrained to follow the camera motion and it additionally
limits the amount of labels that can be selected, thus speeding
up the optimization.

In classical priority belief propagation (p-BP) [13], the
MRF nodes send their messages according to a priority func-
tion which is updated dynamically. The priority at a particu-
lar iteration is computed from the belief values and basically



encodes how close the node is to make a decision. More con-
fident nodes send their messages first and in this way the con-
vergence of the algorithm can be accelerated. We follow the
priority definition of [13] but we offset the priority with a Z-
bonus. The Z-bonus is initially set to 0 for all nodes. Then,
while we scan the MREF to find out for which nodes we want
to disable the V;(+) term, we give a Z-bonus of 1 to the nodes
on the other side of the MRF-grid. The process is depicted in
Fig. 4. Note that holes that lie within the same depth plane
do not get Z-bonusses as both sides of the hole are equally
reliable in these situations. Our priority function is defined
as: .

P(p;) = Z-bonus(p;) + TS| 3)
The second term is the priority definition of [13] and it is the
inverse of the cardinality of the so-called confusion set of a
node. The confusion set is the set of labels for which the
belief is larger than a threshold plus the maximum belief value
of that node.

Using the priority as defined in eq. 3 as an ordering func-
tion, we apply the p-BP algorithm to send messages between
the MRF nodes. Each iteration, the algorithm makes a for-
ward and backwards pass through the set of nodes, having
each visited node send its messages to its neighbors if they
have not been visited before in the same pass. In the forward
pass, we also include the propagation of our Z-bonus. A node
that sends messages to its neighbors during the forward pass
also propagates 80% of its Z-bonus value. This way, we en-
sure that the scheduling function keeps prioritizing nodes on
the edge of the MRF that intersects with the background of
the scene. The Z-bonus is a very simple and intuitive addition
to the priority function and its computation creates no over-
head. Z-bonus values after a first forward pass of p-BP are
shown in Fig. 5.

3. RESULTS

We evaluated the proposed method on the well-known Ballet
video sequence provided by Microsoft [22]. This sequence
has a resolution of 1024 x 768 and is accompanied by depth
maps estimated from stereo. We also performed experiments
on the BigBuckBunny_Flowers and BigBuckBunny_Butterfly
sequences, provided by Holografika in the context of the
MPEG-FTV CfE [8]. These sequences contains computer
generated 3D content at a resolution of 1280 x 768 with
ground truth depth. 79 viewpoints of 121 frames are provided
and the cameras are numbered 6 — 84.

We extrapolated camera 5 in the Ballet sequence to cam-
era 4 and visually compare against the ground truth as well
as the state-of-the-art methods of [16] and [17]. This visual
comparison is shown in Fig. 8. For the BigBuckBunny se-
quences, we rendered all 121 frames for the 72 camera views
that are requested by the MPEG-FTV CfE [8] by interpolat-
ing them from the two closest reference cameras. Cameras 6,

Objective evaluation of BigBuckBunny_Flowers
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Fig. 6: Objective comparison against VSRS [10] on the Big
Buck Bunny sequences. PSNR gains are averaged out over all
the frames in the sequence. (top) Flowers, (bottom) Butterfly

19, 32, 45, 58, 71 and 84 are assumed to be known and the
intermediate cameras are synthesized. Since ground truth in-
formation is available, we can objectively compare the quality
of the synthesized views using the peak signal-to-noise ratio
(PSNR).

Figure 6 shows for all virtual cameras the PSNR values of
the proposed method and four configurations of VSRS [10],
averaged out over all frames. In the VSRS settings, we eval-
uate single versus quarter pixel precision in the warping and
turning the view blending option on or off. The PSNR anal-
ysis shows that our method consistently improves on VSRS
when synthesizing views that are farther away from the refer-
ence cameras. Within the VSRS results, pixel precision does
not appear to have a large impact for this particular sequence.
The view blending option however does prove to be advanta-
geous. Overall, our method yields an average PSNR gains of
1.15 to 1.89 dB with respect to the reference VSRS settings
on the Flowers sequence and 0.37 to 1.08 dB on the Butterfly
sequence. A visual result is depicted in Fig. 7 where cam-
era 12 is interpolated from cameras 6 and 19 using both the
proposed method and the best performing VSRS setting.

During our experiments, we found that the proposed
method is substantially faster than the classical p-BP algo-
rithm as presented in [13]. Our reference implementation of
[13] needs around 20 minutes to process a single frame while
the proposed method reduces this time to the order of tens
of seconds. This speedup is mainly caused by limiting the
candidate labels for an MRF node to its local background
region.



(c) proposed method

Fig. 7: Visual comparison of our method against ground truth
and the View Synthesis Reference Software [10].

4. CONCLUSION

This paper proposes a method to render novel viewpoints
from sparse and non-linear multiview-plus-depth content in
order to address the needs of advanced multimedia systems
that deliver free-viewpoint or super-multiview content. A new
MRF-based inpainting method is proposed that exploits avail-
able depth information in order to avoid bleeding artifacts.
Using a simple but intuitive novel priority-function, the prior-
ity belief propagation algorithm is accelerated. Visual results
are competitive with the state-of-the-art and improvements
in PSNR up to 1.88 dB on average have been shown with
respect to the MPEG View Synthesis Reference Software.

(a) ground truth

(b) result from [16]

(c) result from [17]

(d) proposed method

Fig. 8: Visual comparison of our method against ground truth
and the MRF-based methods of [16] and [17]. (Figures were
taken from the papers.)
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