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Abstract—Multiview video allows for simultaneously present-
ing dynamic imaging from multiple viewpoints, enabling a broad
range of immersive applications. This paper proposes a novel
super-resolution (SR) approach to mixed-resolution (MR) multi-
view video, whereby the low-resolution (LR) videos produced by
MR camera setups are up-sampled based on the neighboring
HR videos. Our solution analyzes the statistical correlation of
different resolutions between multiple views, and introduces a
low-rank prior based SR optimization framework using local
linear embedding and weighted nuclear norm minimization. The
target HR patch is reconstructed by learning texture details from
the neighboring HR camera views using local linear embedding.
A low-rank constrained patch optimization solution is introduced
to effectively restrain visual artifacts and the ADMM framework
is used to solve the resulting optimization problem. Comprehen-
sive experiments including objective and subjective test metrics
demonstrate that the proposed method outperforms the state-of-
the-art SR methods for MR multiview video.

Index Terms—Multiview video, mixed-resolution,
resolution, low-rank, ADMM optimization.

super-

I. INTRODUCTION

Ultiview videos are simultaneously acquired from dif-

ferent viewpoints, which allows for presenting dynamic
visual content from multiple viewing angles at the same
time. This functionality renders multiview video as a powerful
representation format enabling a variety of immersive applica-
tions including free viewpoint video, 3D gaming, interactive
teleconferencing among others. Various increasingly popular
high-resolution (HR) 3D displays, aim at producing highly
realistic viewing perception and immersive visual experience,
but they require up to hundreds of HR multiview videos to
operate.

One of the most critical challenges in multiview video
acquisition and display systems is to acquire, process and
transmit the massive amounts of multiview video data. The
data rates produced by such HR acquisition setups are cur-
rently prohibitive for broad scale deployment, so a solution to
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this problem is required. In this context, developing practical
approaches to capture low-resolution (LR) multiview videos
followed by up-sampling them to HR has received extensive
attention [1]-[3]. Such setups are however often impaired
by the lack of fine details in the upsampled videos. The
alternative is given by mixed-resolution (MR) multiview video
capturing setups that combine HR and LR video acquisition.
Such systems incorporate multiple HR cameras among which
LR cameras are arranged to capture LR videos. These novel
setups produce both HR and LR video streams which enable
to significantly decrease the data transmission and storage
requirements compared to full HR video acquisition.

For MR multiview videos, because the display needs to
process and display videos with a uniform HR resolution,
reconstructing the LR videos at the same resolution as that
of the HR videos captured by the HR cameras becomes
an important issue. This can be seen as a special kind of
super-resolution (SR) problem, for which the following two
problems should be considered: 1) how to reconstruct the
missing texture details from the other input HR camera views;
and 2) how to restrain visual artifacts since the reference
view images are not exactly the same as the targeted one.
The state-of-the-art SR approaches cannot effectively solve the
above-mentioned problems. On one hand, existing multiview
video SR techniques can neither effectively learn from the
HR patches of the neighboring HR cameras [3], nor restrain
noise [1], [2] from the great redundancy of textured patches.
On the other hand, most of image (or video) based SR
approaches [4]-[6] do not function well in our MR multiview
system, due to the lack of analysis of the spatio-temporal
correlation of videos captured from different cameras.

This paper introduces a low-rank constrained SR approach
to MR multiview video. We consider that the matched patches
of all involved views construct a manifold structure in a high-
dimensional space, and introduce a local linear embedding
(LLE) based texture reconstruction optimization to learn the
HR patches from the neighboring camera views. Further-
more, we construct a low-rank constrained global optimization
scheme to restrain visual artifacts, to overcome the imperfect
matching of patches and the consequent fitting errors of such
patches to the target patches. Our low-rank constrained SR
approach is especially effective at exploiting the redundant
information of patches of all cameras when performing SR
in MR multiview video; extensive experimental results will
demonstrate the effectiveness of our approach.

In summary, our main technical contributions are as follows:

o We introduce a low-rank representation based SR frame-
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work for MR multiview video. Our solution analyzes the
redundancy of the matched spatio-temporal patches, and
effectively reconstructs the fine textures using low-rank
based optimization.

e« We solve the SR problem with a well-defined initial-
ized reconstruction using local linear embedding, which
effectively learns the high-frequency details from other
reference cameras.

o We design a multiview SR evaluation metric accounting
for the global gradient distribution in multiview images.

II. RELATED WORK

The image and video SR problem is a fundamental topic
in many research communities (detailed survey work can be
found in [7]-[9]). Here we briefly review some previous papers
that are related to our work.

The very early SR methods include some well-known linear
or non-linear filters, such as Nearest-Neighbor, Bilinear, Bicu-
bic, Lanczos and their variants. Kopf et al. [4] introduce joint
bilateral upsampling to further consider each pixel’s spatial
coordinates and color intensities. These methods easily suffer
from various artifacts (the most common being blurriness),
due to their simple filtering kernels or weighting factors.

Besides these relatively simple filtering methods, there are a
great number of single image based SR approaches injecting
various prior knowledge to generate the solution, including
regularization constraints, such as gradient statistics, local
texture similarity, geometry prior, etc. For instance, in [10] two
piece-wise continuous functions are used to approximate the
gradient density distribution of images in an iterative decon-
volution of the upsampling. Gao et al. [11] use histograms of
oriented gradients of LR patches to find good neighbors as well
as reconstruction weights. A parametric gradient profile model
of the image structures is presented in [12]. In [6] a directional
standard-deviation-based weights selection is formulated to
model the local geometric duality and the non-local similarity
of images. To suppress the effect of pseudo-edges, Yuan et
al. [13] introduce an adaptive total variation model to favor
the piece-wise constant property of flat regions. In [14] affine
transformations are supported to detect local shape variants
of the same LR image, and the internal patch search space is
greatly extended.

Many SR methods take multiple external images or con-
secutive video frames into account. In order to handle motion
blur, noise, outliers and other effects when upsampling from
a set of LR images, Farsiu et al. [15] introduce a L; norm
minimization and robust regularization strategy for data fusion.
In [16] a mixed model of L; and L5 norms is created to detect
multi-orientation and multi-order variations of multiple frames
in a LR video. The method proposed in [17] approximates
each pixel of the video sequence with a 3D local Taylor
series, and computes the local motion of each pixel when
performing SR. Adam et al. [18] further consider to improve
the recognition of small moving objects, and a sub-pixel
precise object boundary model is constructed to solve the
intensity of the target object. This class of SR methods exploits
also the temporal information compared to single-image based

techniques, yielding better reconstruction results. However,
in multiview video based SR problem, more video channels
should be processed to utilize the correlation between the
camera views.

In the last decade, many SR methods that rely on sparse
representation techniques have been proposed. One of the
pioneering works in this direction is presented in [5], where the
coefficients of the sparse representation of LR image patches
are used to generate the HR textures. Schulter et al. [19]
propose to map the LR and HR patches using random forests.
In [20] a set of auto-regressive models are used to learn
the dataset of example image patches. The method in [21]
proposes to learn a parametric sparse prior of HR images
from the training set and the input LR image. There are also
some schemes that operate in the Fourier domain [22], Wavelet
domain [23], [24], or directly process the compressed data
stream [25]. In general, it is difficult for the above-mentioned
SR methods to deal with complex textures in natural images,
which renders the SR problem as ill-posed when using a single
image as input.

Recently, Convolutional Neural Networks (CNNs) have
been extensively applied to the SR problem (see e.g. the survey
in [9], [26]). Among them, one of the pioneering works in this
direction is presented in [27], where a specific SR Convolu-
tional Neural Network (SRCNN) is proposed to learn the LR-
to-HR nonlinear mapping function. Many subsequent methods
based on this solution have been recently proposed, such as
using the sparse priors [28] or generative adversarial networks
(GAN) [29]. Tai et al. [30] introduce Deep Recursive Residual
Network (DRRN) to simplify training of very deep networks.
In [31] a residual dense network is presented to learn the
features of the original image from all the convolutional layers.
In [32] a deep Laplacian Pyramid Super-Resolution Network is
proposed to share parameters both across and within pyramid
levels.

There are several SR works [1]-[3] that focus on MR
based multiview video. In [33] a 2D piece-wise auto-regressive
strategy is used to interpolate each target pixel. Li et al. [34]
employ a kernel regression model to analyze the local image
structure, and use non-local means to exploit the similarity
between different views. Because the lighting would be dif-
ferent among camera views [35], Jin er al. [2] propose to
synthesize the virtual view, and compensate the luminance
difference between views. However, view synthesis is still a
very challenging task [36], [37]. The method in [3] focuses on
recovering the blurred views using the associated depth maps.
In most of multiview video acquisition systems, the depth
information is recovered from its LR version [38], which easily
suffers from reconstruction errors. Richter et al. [1] correct the
projection errors introduced by inaccurate depth information
when synthesizing the high-frequency content. Interestingly,
some researchers also seek to enhance the resolution of light
field [39], [40] and the recovered depth information [41].
Different from these methods, our approach does not rely
on the inaccurate depth information which might dramatically
result in reconstruction errors of the HR image. We focus on
exploiting the correlation between different camera views in
the MR system, and use the low-rank constraints of patches
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to guide the target texture reconstruction process.

III. PROPOSED APPROACH
A. Problem Formulation

In many image SR solutions, it is assumed that the LR
image is a degraded version of the HR image, and such
degradation procedure is mixed by blurring, down-sampling
and noise interference (see eziéimples in [5], [10], [21], [42)]).
Formally, the LR image [ € RN is obtained by the
degradation of the corresponding HR image I " e RNw and
such process can be expressed as

LR

HR
I'"" =DBI"" +o, (1)

where B € RM*Nn is the blurring filter, D € RN*Ne
is a downsampling operator, and v is additive noise. In the
above representation, N; and N, are the sizes of the one
column of the LR and HR images, respectively. Recovering
the desired HR image from the observed LR one is a typical
mverse problem. Let we denote the reconstructed HR image
as I"" € RN , such inverse problem can be expressed as the
minimization of the following formulation:

~HR HR||2 HR
I = argmln HI — DBI H +nR(I ). )
2
™

Here R(I HR) is a regularization term to model the prior
knowledge of the HR image, and the parameter 7 is used to
balance the fidelity term and regularization term.

Our work shares the above-mentioned SR formulation, and
thus we follow the well-used assumptions that v is a zero-
mean Gaussian noise and B is a known Gaussian blurring
operator. In the following we introduce how to construct our
SR framework and numerically solve it for MR multiview
video.

B. System Overview

Different from single image or video SR methods [43], [44]
that only consider either the spatial or the temporal correspon-
dence within one view, exploiting the joint spatio-temporal
correlation of videos captured from different cameras is of
particular importance in MR multiview systems. Hence, we
need to effectively learn HR textures from both neighboring
camera views (plus the reconstructed previous frame) and
regress visual artifacts due to imperfect content matching of
patches.

Suppose I is a frame in MR multiview video At time ¢
the input LR image of the target camera e is I (t ctary- Our

purpose is to reconstruct its desired HR version [ ( titw) by

making use of the previously generated frame I, (t—1,ctar) and

the HR frames from its ne thbonng camera views, such as

HR HR HR
I(t_Lcl), I(t_lm), I(t,cl)’ I(f ) anzi so on. We define I(f ctar)
as the reconstructed HR image of [ (t,ctar)- More details on the

introduced notations are given in Tab. L.

Our proposed framework is shown in Fig. 1. To initialize the
system well, we ﬁrstly get the approximate HR version of the
LR video frame I (t.ctar)s where the low-frequency components
of the image are coarsely preserved. This can be easily

TABLE I
INTRODUCED NOTATIONS.

Notation Implication
cter Target HR camera view (with LR input video)
o C = {ci|i = 1,2,...}, is an aggregate of reference
HR camera views
I(t cter) LR image from camera c'*" at time ¢
LR
I(t ctor) Target HR image of I, .tary
(t’c,,,r) Reconstructed HR image of I(Ltim,)
" The i-th dar X das patch from I (PtI,I:f”) for learning
’ HR details
9, The [-th dr x dr patch from fgf:mr)
9.k The k-th d;, X dr, nearest neighboring patch of g;

from I (Pt[’}:m,,)

HR - HR
L (t,ctor) Low-frequency version of I, .tary
~HR

N “OR
Reconstructed low-frequency versmn of Iy crary

LF(t.ctor)
Di The i-th dys X das patch from I (t ctar)
7R Reference HR image from view c¢; of HR camera at
(tei) time ¢, where ¢; € C
. The j-th dar X dar nearest neighboring patch of g;
(4:9)

HR
from I, .

HR HR

I

L r(tes) low-frequency version of I, .
D7) The j-th das X dar nearest neighboring patch of p;
HR
from I ..
w Correlation matrix between p; and p; ;)

achieved using the Bicubic upsampling filter, such as in [5],
[10]. Then, we use the LLE optimization framework to learn
the spatio-temporal HR details from the reconstructed previous
HR image and other HR frames of the neighboring views.
After that, we construct a low-rank regularization method to
effectively perform artifact regression. Finally, we use an iter-
ative optimization method to get a converged solution I (Zf:t”)’
which is the ¢-th output frame and also is the reference HR
frame for the reconstruction of the next frame.

C. Learning spatio-temporal HR details from the neighboring
HR views

In order to learn the HR details from the neighboring HR
views, our solution (i) takes the texture patches of multiview
videos to form a manifold structure in a high-dimensional
feature space, and (ii) expresses each patch as a linear com-
bination of a few nearest neighbors in the feature space.
This representation could be optimally solved by the LLE
framework [45]. On the other hand, the low-frequency visual
textures are the most important components in the image
domain, and such components are coarsely preserved when
images are degraded with Gaussian blurring and/or down-
sampling. We assume that the patch-level manifold repre-
sentation structure of multiview videos should be preserved
under the above-mentioned degradation. Therefore, once we
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. . . . i, . . . ~H
Fig. 1. System overview. We take the mixed-resolution multiview videos as input and generate all HR videos. To reconstruct the ¢-th HR frame I,

R
ctary?

we learn the textures by representing each patch using some HR images from the neighboring views and the reconstructed previous HR frame of the same
view. The low-rank constrained regularization of the image patch is also introduced to regress spatio-temporal artifacts.

obtain the LLE-based representation parameters of all low-
frequency patches of the target HR image, we can take them
to reconstruct the target all-frequency HR image with the HR
patches of the neighboring HR images.

We now consider reconstructing I (Zf:’*“) on the image patch
level. As mentioned before, we can utilize the HR images from
the neighboring HR views and the reconstructed previous HR
image I (Iil,cm") in the same view; we denote such HR images

as [ (H R) what we call reference images, and we thus define

I . () a8 their corresponding low-frequency images.

For each patch p; Wizlg }ghe size of dp; X dps in the initialized
low-frequency image ILF (t,ctar)s its most similar patch from
the j-th reference image is p(; ;). Here the similarity between
two patches is computed by using the ¢5 color distance of their
corresponding RGB pixels. We then let iAle’ ey M, and M is
the number of patches when the image [ e (tctar) is separated
with the patch size d s xd ;. Once the pixels of patch p(; ;) are
reordered into one column, we build a reference matrix P; =
[P(i,1)>P(i,2)s -+ P(i,n)]» Where n is the number of reference
images involved in the system. Therefore, with an error term
A, the patch p; can be linearly represented by its most similar
patches p(; ;) from the n reference images as:

pi = wap(i,j) + A, s.t. Zwi =1, 3)
j=1 j=1

where w] is the weight factor of the corresponding patch

from the reference image j. Furthermore, we define a local
similarity weight vector w; = [w},w?,...,w?]T € R" !, 5o
the expected correlation between p; and P; can be calculated
by solving the following constrained least square problem:

argmin ||p; — Piwi||5, 5.t A Tw; =1, 4)
where A € R™! is a vector of all 1. Therefore, the
reconstruction weights of all patches of low-frequency im-

~HR

age ILp(t, ctary CAN be represented using the matrix W €

R(nM)xM , and its elements are defined as

W(M(G—1)+1i,i) =
' when D(i,5) s the similar patch of p;

J
wy,
{ 0, otherwise. ®)

Fig. 2 shows one example on how we represent the target
HR patch with the above-mentioned optimization. In this
figure, the top-right and bottom-right respectively show two
represented patches with the best and worst matching errors
in the image. Now we have computed the weights of each
low-frequency patch with its nearest neighbors in the manifold
structure, and such weights can be further utilized in the HR
texture reconstruction.

D. Low-rank Constrained Artifact Regression

For multiview videos, it is challenging to avoid visual
artifacts when learning texture details from similar patches
among different views under complex lighting and motion
conditions. On the other hand, low-rank representation based
modeling of similar patches has been successfully used in
many image reconstruction tasks [21], [46]. Inspired by these
exciting works, we propose a low-rank regularization method
to effectively avoid reconstruction artifacts.

Formally, for each dj, x dr, patch g, in the image I (z,ﬂ;t”)’
we find its K most similar patches in the same image using
the KNN algorithm, and let g s € R(L)* be the k-th most
similar patch of g,, where 1 < k < K. Let Tuxk € R(d)* <N,
be a patch selection matrix, which is used to represent each

patch 9(l,k) within the image [ glzm) as:

HR
9a.k) = Tky L, ctary. (6)

As we use the one column version of the image to be
computed, only if the i-th pixel in g 1) is selected from the
j-th pixel in [ gitm), the corresponding element T(; ry;; is 1,
otherwise it is 0. Obviously, T,k is a binary matrix, and
(Ttxy) " T,k is a diagonal matrix. We aggregate all similar
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Fig. 2. Our LLE-based HR image patch representation of the target view using
5 most similar patches selected from the reference images. GT: the ground

truth; LLE: the LLE-based optlmlzatlon representation; q(L 1) to q(L 5) are
~HR

. e L etary T ey L)

I (te2)’ respectively. The top-right and bottom-right respectively show two

represented patches with the best and worst matching errors in the image.

the most similar patches from o and

patches g xy of g, as G = [g,1), -+ 9(, k)], impose it to
have a low-rank property, and model the matrix G; using the
Weighted Nuclear Norm (WNN) introduced in [46]. Typically,
it is expected that

Gl s = 8i0;, (7
i

where o; is the j-th singular value of Gy, and 6; > 0
is its corresponding weight. Here the larger singular values
capture the most important low-frequency information, while
the smaller singular values typically encode high-frequency
information [47]. Therefore, as presented in [21], [46], the
weight J; can be introduced to make sure that the components
corresponding to larger singular values have less shrinkage:

8 =A/(oj +e). ®)

Here we introduce a positive constant A to scale the singular
values. Different from other methods (e.g. denoising), in our
solution it is difficult to obtain an analytic solution for A,
and we turn to empirically find a relatively good value (see
more details in the experiments section). ¢ is a small positive
constant to avoid division by zero.

Then, the solution of the low-rank constrained patch recov-
ery can be optimally obtained by the Weighted Singular Value
Thresholding (W-SVT) solver:

S5(G1) = U(S — Diag(6))+V " ©)

In this equation, UXV " is the singular value decomposition
(SVD) of G;. Let ¥ = (¥ — Diag(0))4, this is the matrix of
soft-thresholded singular values such that

., = maz{S;; — 6;,0}. (10)

Consequently, with this optimal solution we can get the artifact
regression result of the reconstructed image. Fig. 3 shows one
example on how to eliminate the visual artifacts introduced by
inaccurate patch representation with reference patches.

Fig. 3. Our low-rank constrained artifact regression can effectively eliminate
visual artifacts introduced by patch representation of reference patches. LLE:
our spatio-temporal HR texture representation using reference patches; Low-
rank: our low-rank constrained regression result.

E. Joint Optimization

We have separately introduced means to: 1) learn texture
details from the reference HR frames using LLE-based re-
construction, and 2) perform low-rank approximation based
patch artifact regression. Combining these two ideas, we can
further formulate the proposed HR image reconstruction task
as a global optimization problem:

~HR .

I(t’ctar) = arg min

HR
(t,ctar)

HR
1

2
LF(t,C“”‘) ‘

Bl(t Ctar)

L
+allQ=VWI3+ 8> 1Gil,s

=1
HR .
st. @i = Sil(y prary, ©=1,..., M

HR
g(lJC) = T(l,k)l(t th); l= 1, ...,L, k= 1, ...,K. (11)

In detail, the image I . cm) is first segmented into patches
with the size of dj; x dp; pixels, and for each patch we
convert it to a one-column ¢; where the pixels are rear-
ranged vertically. q(; ;) is the patches of the reference HR
frames IF_“_%, for ¢ = ., M, and j-th nearest neigh-
bors patcﬁ of ¢;. We define Q = [q1,...,qu), V =
[11(1,1),---,11(M 1),4(1,2)5 -+ 4(M,2)5 9(1,3)s -++5 4(M,3) > Q(lzg

q(M,4)5 9(1,5) -+ A(M, 5)] To represent ¢; with image I(t ctarys
we define a binary matrix S; € R()*XNu (o select the
desired patch which function is similar to 7{; ). Combining
Q and q; = S;1 gitm), we can get the following formulation

Q = [SiT{psearys s St s o)

HR ~_ HR
= [Si7'-~7SM]I(t)Cta7‘) é Sl(t,ct‘“')' (12)
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With this definition, Eq. 11 can then be reformulated to the
following optimization problem:

~HR 2

Iy ctary = aI;Ingin

~H

R HR
ILF(t:c“”) - Bl(tﬁct‘”‘)

2
(t.ctor)

L
~ HR 2
fa HSIWW) - VWH2 +B8Y NG, 4+
=1

HR
s.t. g(l,k) = T(l,k-)-[(t,cfa"'); = 1, ..,7L; k= 1, ceey K. (13)

This optimization problem is difficult to directly solve due
to the WNN term. We turn to use an iterative optimiza-
tion method based on the Alternating Direction Method of
Multipliers algorithm (ADMM) [48]. Then, the constraint is
converted to the cost function by an augmented Lagrangian
formulation, and the total optimization function becomes:

2

~HR . ~HR HR
I(tyct,ar) = a;%{mln ILF(tYCtaT> — B](t,c“”) 9
(t.etar))

L
~ HR 2
fa HSI(t’Ctm\) - VWH2 +8> G, 5
i=1

L K
HR 2
+rY D Hga,k) — T l,crory +ean) H2 - (4
=1 k=1

Here e(; 1) is the weighting parameter, and «,  and ~
are three Lagrange multipliers to balance the corresponding
components. As mentioned in [48], a, S and v might affect
the performance of the algorithm. However, most of existing
ADMM methods are not overly sensitive to those parameters,
and slightly tuning these parameters is required when they
are initialized with small positive values. As in standard
ADMM methods, assumin§ all other parameters are fixed, we
update each variable Gy, I (t Izm,,.) and E(1,k) iteratively, until the
convergence of the total function is reached. Now we present
the details on how to solve our optimization function with the
ADMM pipeline.

Updating fgim)
rameters are fixed, the reconstructed image I Zi“"’) is updated
by solving the following problem:

: Assuming all other variables and pa-

i ‘f” BI |+ H§1HR vw |
arg min ary — ar «Q ary —
e Lr(teter) (tetary |, (t,ctar) )
(t,ctar)

L K

HR 2
+y E E Hg<l’k> — T(Lk)[(t’ctar) + 6(1’1@)H2. (15)
=1 k=1

1

This is a typical unconstrained quadratic program is-
sue. Suppose T = >3 (Tuw) Tur and g =

S (Taw) T (9 k) + €, the optimal value of Eq. 15
can be obtained with the following equation:

~HR

Iy ctary = [B"B+a(S)TS — T
~HR ~ ~
(BTILF(LCH”-) + aSVW 4+ ~g). (16)

HR

Updating I Lr(tetar) Once we get the value of I (F;Izm,,,), the

reconstructed low-frequency version of the target HR image
is updated by:

~HR ~HR

ILF(t,Ctar) = BI(t7cta'r). (17)

Updating G, : Let us denote:

— ~HR ~HR

Gl = [(T(l,l)j(t,c“”) - 6([71))7 veny (T(I’K)I(tyctu.T) - e(l,K))L (18)
the task of updating the patch matrices G;,l = 1,..., L can
then be expressed as follows:

—~ 112
argminﬁHGl||*5+7HGlfGlH . (19)
G, ’ 3
Following the methodology described in Sec. III-D, this issue
can further be fixed with the W-SVT solver [46]:

G =U/(% — %Dmg(é))mf (20)

Note that in this equation UlZlVlT is the SVD of al
Updating e(; ): Lastly, this weighting parameter can be

updated with the following standard ADMM method:

~HR
€l,k) ‘= €(,k) + [g(lm — T(Lk»)](t’ctar)},l =1,.,.L,k=1,..., K.
2D
Therefore, the proposed algorithm yields the reconstructed
. sHR . . .
HR image I (t,ctar)- The whole algorithm including the above-

mentioned updating is also summarized in Algorithm 1.

Algorithm 1 HR reconstruction for MR multiview videos

Input: The LR image I(L,Ff,mr), the reference HR images fgi ctarys
HR HR CH HR S
Toteny Lit—t,e0) Lit,er) a0d Lg )3

QOutput: The reconstructed HR image I (t’]:ta.r>;H

1: Pre-processing: Get the initialized image IL:(t,cf‘”);
2: Optimization:

3: while not converged do

4 Update fg:‘”) via Eq. 16;

5. Update | :(t,ctw) via Eq. 17;

6:  Update dl via Eq. 20;

7 Update e ) via Eq. 21;

8: end while R

9: return the reconstructed HR image I\, ..ar).

IV. EXPERIMENTAL RESULTS

We implemented the proposed SR approach on a desktop
with Microsoft Windows10 operating system, Intel (R) Core
(TM) i7-7700 CPU, 16G Memory. We use C++ programming
language and OpenCV Library to implement our SR approach.
Our experiments are applied on various well-known multiview
videos, which are captured by well-calibrated multiview cam-
era rigs, or rendered based on computer-generated multiview
scenes. For these typical multiview videos, the target LR video
can always take the neighbouring HR videos as references.
The proposed approach is also compared with some state-of-
the-art SR methods, including single- and multi-image based
methods. Some latest SR methods based on CNNs are also
adapted such that they can be evaluated on MR multiview
videos. Finally, we also introduce a new SR evaluation model
for MR multiview video.

A. Parameters Selection

In our solution the value of parameter dy, is 15 in the low-
rank regularization which is the same as in [46]. Besides
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Fig. 4. Parameters dy and dj; selection of the proposed method.

Fig. 5. Convergence curves of PSNR and SSIM of our optimization (for the BBB sequence under SR factor of 3).

Fig. 6. Parameter A selection (for the BBB sequence under SR factor of 3).

that, we jointly consider choosing two optimal parameters
dyn and djps, which are used to define the patch size in pre-
processing and learning HR details, respectively. Fig. 4 shows
the reconstruction quality metrics of the Peak-Signal-to-Noise-
Ratio (PSNR) and Structural Similarity Index (SSIM) on the
Big Buck Bunny (BBB) video sequence [49]. Based on this test,
we empirically choose dy = 5 and dj; = 11 respectively in
our solution. As shown in Fig. 5, the PSNR and SSIM values
can quickly converge under several iterations. Therefore, we
set the iteration number as 4 in all our experiments.

The parameter A\, which is used to scale the singular
values, is set to 1000. As shown in Fig. 6, with this value
the proposed solution yields a good performance in terms
of PSNR and SSIM metrics. Since the proposed solution is
solved using a typical ADMM framework, the parameters that
balance all involved terms in the final optimization problem
are experimentally tuned; based on these experiments, we
empirically set a, 8 and « as 1, 1, and 0.5, respectively.

In most of our experiments we take five nearest neighbors
when representing each HR patch using our LLE based
optimization. This is because that the reference frames consist
of four HR images from the neighboring views and one
reconstructed previous HR image of the same viewpoint, and

the most similar patch of each reference frame to the target
patch is selected to comprise the latter’s nearest neighbors.
The exception is reconstructing the first HR frame of the target
video stream, where only four HR frames of the neighboring
views will be involved. Besides that, some more complex
extensions will be presented in Sec. IV-D.

B. Comparison with Other SR Methods

Our framework has been compared with many other SR
methods on a variety of multiview images and videos, both
for synthetic and real image datasets. We used the following
synthetic multiview images for test: BBB [49], Shark, Dancer
and MicroWorld [55]. The cameras #5, #6, and #7 have been
chosen as left, central, and right camera views for BBB, and
the cameras #1, #2, and #3 have been chosen as left, central,
and right camera views for Shark, Dancer and MicroWorld. As
for the real image dataset, we used cameras #1, #2 and #3 of
multiview videos Knuffelgooi and Ballroom [56] respectively,
as their own left, central, and right camera views. All central
camera views are down-sampled as input LR videos. In the
following experiments, the best three calculation values are
with red, blue and green colors in the corresponding tables.
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TABLE I

COMPARISON OF PSNR AND SSIM METRICS WITH DIFFERENT SR FACTORS.

BBB Shark Knuffelgooi Ballroom Undo_Dancer | MicroWorld
2 | 32.280/0.932 | 36.269/0.961 | 34.072/0.859 | 34.288/0.937 | 30.267/0.868 | 30.503/0.837
Bicubic 4 | 27.74470.835 | 31.372/0.903 | 30.992/0.756 | 27.785/0.791 | 26.769/0.757 | 26.154/0.616
8 | 24.199/0.733 | 28.050/0.848 | 28.303/0.674 | 23.176/0.609 | 24.092/0.641 | 23.405/0.453
2 | 34.615/0.951 | 38.316/0.972 | 34.804/0.871 | 36.562/0.955 | 32.057/0.901 | 32.016/0.884
ScSR [5] 4 | 28.671/0.853 | 32.191/0.912 | 31.389/0.764 | 29.034/0.821 | 27.466/0.757 | 26.734/0.654
8 | 24.843/0.741 | 28.579/0.852 | 28.754/0.679 | 23.922/0.631 | 24.568/0.648 | 23.720/0.468
2 | 35.047/0.954 | 38.607/0.973 | 34.844/0.870 | 36.741/0.956 | 32.066/0.900 | 32.165/0.887
Kim [50] 4 | 29.308/0.865 | 32.461/0.916 | 31.724/0.769 | 29.347/0.824 | 27.897/0.761 | 26.778/0.654
8 _ — — _ — —
2 | 3494570956 | 38.731/0.974 | 35.294/0.887 | 37.141/0.961 | 32.269/0.907 | 32.316/0.889
SelfExSR [14] | 4 | 29.796/0.876 | 32.938/0.923 | 32.167/0.786 | 29.813/0.837 | 28.309/0.775 | 27.118/0.668
8 | 25.576/0.770 | 28.960/0.863 | 29.336/0.695 | 24.229/0.638 | 25.193/0.668 | 23.932/0.476
2 | 34.812/0.954 | 38.454/0.973 | 34.919/0.875 | 36.917/0.960 | 32.235/0.903 | 32.069/0.885
SRCNN [27] 4 | 29.640/0.868 | 32.586/0.916 | 31.875/0.772 | 29.888/0.834 | 28.313/0.769 | 26.796/0.652
8 _ _ _ _ _ _
2 | 35.453/0.959 | 39.013/0.976 | 35.099/0.878 | 36.941/0.960 | 32.402/0.908 | 32.448/0.894
VDSR [51] 4 | 30.184/0.880 | 32.999/0.923 | 32.163/0.780 | 30.164/0.844 | 28.557/0.779 | 27.003/0.667
8 _ _ _ _ _ _
2 | 35.655/0.960 | 39.316/0.976 | 35.481/0.889 | 37.376/0.963 | 32.529/0.910 | 32.774/0.899
SRResNet [29] | 4 | 30.574/0.889 | 33.522/0.929 | 32.448/0.791 | 30.533/0.854 | 28.674/0.786 | 27.489/0.686
8 | 26.199/0.790 | 29.523/0.873 / 25.020/0.676 | 25.844/0.687 | 24.244/0.491
2 / / 35.542/0.889 / / /
EDSR [52] 4 | 30.892/0.894 | 33.789/0.932 / 30.662/0.858 | 28.735/0.789 | 27.626/0.693
8 _ _ _ _ _ _
2 | 35.900/0.962 | 39.505/0.9769 /0.890 | 37.444/0.964 | 32.625/0.912 | 32.959/0.903
RCAN [53] 4 | 31.080/0.896 | 33.868/0.933 | 32.633/0.796 | 30.879/0.863 | 28.879/0.791 | 27.677/0.696
8 / / 30.112/0.714 | 25.481/ / /
2 | 35.007/0.950 | 38.465/0.968 | 34.553/0.860 | 36.372/0.949 | 31.755/0.888 | 31.830/0.876
SRGAN [29] 4 | 29.742/0.866 | 32.560/0.906 | 31.540/0.752 | 29.394/0.812 | 27.505/0.721 | 26.452/0.636
8 | 24.505/0.727 | 27.714/0.827 | 28.439/0.654 | 23.125/0.582 | 24.478/0.620 | 22.779/0.417
2 | 35.149/0.953 | 38.278/0.970 | 34.528/0.860 | 36.719/0.954 | 31.888/0.896 | 32.023/0.883
ESRGAN [54] | 4 | 30.203/0.876 | 33.090/0.918 | 31.608/0.750 | 29.883/0.827 | 27.904/0.755 | 26.814/0.654
8 | 24.005/0.735 | 25.912/0.822 | 27.576/0.651 | 21.995/0.544 | 23.207/0.601 | 22.210/0.420
2 — — — — — —
SRNTT-¢; [44] | 4 / / 31.980/0.786 / / /
8 | 25.930/0.790 | 27.463/0.854 | 28.475/0.590 /0.692 | 25.399/0.687 | 24.075/0.500
2 — — — — — —
SRNTT [44] 4 | 30.543/0.887 | 33.208/0.926 | 31.114/0.687 | 30.541/0.851 | 30.153/0.838 | 27.219/0.737
8 | 25.185/0.760 | 26.245/0.781 | 26.175/0.514 | 23.928/0.627 | 24.678/0.641 | 22.480/0.438
2 _ — _ — — —
CrossNet [43] | 4 | 35.191/0.960 | 38.979/0.982 | 31.038/0.782 | 33.285/0.932 | 34.683/0.943 | 32.768/0.933
8 | 30.048/0.921 | 36.575/0.982 | 25.094/0.648 | 24.209/0.832 | 32.193/0.921 | 28.874/0.896
2 | 39.322/0.976 | 45.7507/0.987 | 35.564/ 39.299/0.967 | 40.461/0.976 | 36.951/0.961
Ours 4 | 37.024/0.964 | 43.490/0.983 | 33.242/0.806 | 34.469/0.918 | 37.320/0.963 | 33.844/0.936
8 | 33.691/0.943 | 29.691/0.909 | 31.286/0.749 | 29.901/0.873 | 30.261/0.878 | 32.515/0.906

Our approach has been compared with some state-of-the-
art SR methods, including single-image SR methods (e.g.
ScSR [5], Kim [50], SelfExSR [14], SRCNN [27], VDSR [51],
SRResNet [29], EDSR [52], RCAN [53], SRGAN [29] and
ESRGAN [54]) and multi-image SR methods (e.g. Richter [1],
CrossNet [43] and SRNTT [44]). In order to be as fair as possi-
ble, some methods such as CrossNet [43] have been retrained
by taking multiview HR images as given reference images.
The method [44] are with two versions: one for minimizing
the MSE (named SRNTT-{5) and another complete version
with adversarial loss (named SRNTT).

Firstly, the objective evaluation with PSNR and SSIM met-
rics on the BBB, Shark, Knuffelgooi and Ballroom sequences
are shown in Tab. II, where SR factors include 2, 4 and 8 in

both spatial dimensions. In most of these experiments, our
method achieves the best results. Especially, when the SR
factor becomes 8 on the MicroWord sequence, our PSNR and
SSIM values are +3.755 and +0.01 higher than that of the
second best method (i.e. CrossNet [43] ).

In order to observe the temporal consistency of the gen-
erated results, Fig. 7 presents the results of multiple consec-
utive frames on the BBB, Shark, and Knuffelgooi sequences.
These stable results demonstrate that our method reasonably
preserves the temporal consistency, because the previous HR
frames of multiple camera views are well modeled in the
optimization framework.

Secondly, we provide some examples on visual comparison
against other existing methods. Fig. 8 shows the zooming
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Fig. 7. PSNR and SSIM for BBB, Shark and Knuffelgooi videos, the SR factor is 3.

details of those results generated by different SR methods.
For the BBB and Knuffelgooi the upsampling factors are 4
and 8, respectively, in both spatial dimensions. It is easy to
observe that our solution is better at recovering the detailed
textures. For instance, in the upper half of Fig. 8, the yellow
leaves are well reconstructed using our approach, while the
other methods tend to generate over smoothing results or other
artifacts. This obvious visual phenomenon also happens on
Knuffelgooi example (see the bottom half of Fig. 8), where
the latter example is captured from the real world. In all of
these experiments, our method achieves the highest PSNR and
SSIM values (see the bottom of each sub-figures).

Thirdly, we also compare with some other methods that are
specified (or could be easily adapted) for MR multiview video.
Typical reference methods include Richter [1], CrossNet [43]
and SRNTT [44], where the first method is a depth map based
multiview SR solution, and the other methods are using deep
learning techniques. We then performed all of these methods
on different Middlebury multiview sequences. For these tests,
cameras #1, #3, and #5 have been chosen as left, central,
and right camera views, respectively, and all input central
camera views are with LR images. The upsampling factors
have been chosen to 4 in both spatial dimensions. Moreover,
the videos are respectively applied on both the Y luminance
and RGB color channels, while the results of Richter [1] comes
from their article directly. Tab. III summarizes the results.
In general, we notice that our method yields the best PSNR
values for all examples. This evaluation proves again that our
approach is very suitable for MR multiview video.

C. Ablation Study

We firstly evaluate the gains brought by LLE-based HR
patch reconstruction in our solution. As listed in the first row of
Tab. IV, when directly removing the LLE-based reconstruction

component, the decrease in PSNR could be up to —7.920 in
the Undo_Dancer sequence. In addition, we check whether
the LLE-based reconstruction with five most similar reference
patches is better compared to that of only one nearest patch.
For the latter, the target HR patch is directly duplicated from
the most similar patch taken from the five HR reference
images. As shown in the “one ref patch” row of Tab. IV,
using only one reference patch leads to a substantial decrease
of the quality of the final reconstruction. Secondly, we remove
the low-rank constrained objective in our solution to assess
the impact on the overall performance; the results show that
the PSNR of the reconstructed image will reduce with up to
—1.318 dB for the Ballroom sequence.

Thirdly, we investigate the impact of the reconstructed
previous HR frame of the target view in our optimization. The
third row of Tab. IV (i.e. "no pre-frames”) shows the result
in this case, revealing that the PSNR values would be quickly
decreased, with up to -1.088 dB in the MicroWorld sequence.

Finally, we test how much we gain when solving the optimal
weight matrix W in Eq. 5 with the low-frequency versions of
the reference HR images. As reported in the last row of Tab. IV
(i.e. ’no LFRef”), compared to that directly with the reference
HR images, our solution gains respectively up to +2.054 dB
and +0.041 in PSNR and SSIM respectively.

D. Experiments for More Complex Situations

Till now, all the above-mentioned experiments select three
adjacent viewpoints as left, central, and right camera views.
Now we will consider more cases with different viewpoints,
baselines, or even more complex situations that could probably
arise in practice. For example, the left or right view might be
missing, or there are more than one view just from the left/right
side of the target viewpoint. For these cases, the reference HR
frames of the target HR image are changed accordingly in
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Fig. 8. Visual comparison for the BBB and Knuffelgooi sequences, the SR factors are 4 and 8, respectively.
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TABLE III

PSNR COMPARISON ON MIDDLEBURY DATA SETS WITH SR FACTOR 4.

Art Books | Dolls | Moebius | Aloe | Babyl | Bowlingl | Lampshadel | Middl | Plastic
Bicubic 31.70 | 29.43 | 30.42 31.85 27.12 | 31.32 35.25 35.86 30.65 38.06
Kim [50] 32.87 | 30.34 | 31.27 32.49 27.45 | 31.65 3591 36.67 31.48 39.47
ScSR [5] 32.32 | 29.95 | 30.86 32.23 2743 | 31.44 35.56 36.08 31.08 38.46
Richter [1] 35.13 | 34.23 | 34.90 35.44 37.23 38.88 39.33 34.90
CrossNet-RGB [43] | 33.54 | 30.04 | 31.92 3391 29.24 | 32.48 37.45 35.67 32.61 36.25
CrossNet-Y [43] 35.23 | 31.56 | 33.51 35.76 30.92 | 34.81 38.28 33.97 38.88
SRNTT-RGB [44] 34.19 | 30.60 | 32.75 33.21 30.29 | 32.74 35.62 33.70 32.27 35.95
SRNTT-Y [44] 32.20 | 34.58 35.14 32.26 | 34.84 37.95 37.90 34.07 40.20
SRNTT-¢>-RGB [44] | 3490 | 31.39 | 33.68 34.15 30.32 | 33.61 36.60 38.18 33.35 39.29
SRNTT-/2-Y [44] 36.90 36.04 32.00 | 35.79 38.40 40.92
Ours-RGB 36.07 | 32.82 | 36.35 33.88 39.64 40.99 35.12 44.79
Ours-Y 38.00 | 34.49 | 38.18 37.65 35.86 | 38.92 41.54 43.08 36.71 46.47
TABLE IV
PSNR AND SSIM GAINS OF EACH STEP IN OUR SOLUTION.
BBB Shark Knuffelgooi Ballroom Undo_Dancer MicroWorld
no LLE -4.295/-0.034 | -7.718/-0.024 | -0.123/-0.004 | -0.751/-0.001 | -7.920/-0.704 | -3.566/-0.103
no low-rank | -0.926/-0.007 | -0.427/-0.002 | -0.786/-0.026 | -1.318/-0.036 | -0.323/-0.004 | -0.315/-0.005
no pre-frames | -0.906/-0.004 | -0.982/-0.001 | -0.647/-0.022 | -0.201/-0.024 | -0.804/-0.048 | -1.088/-0.017
one ref patch | -2.242/-0.014 | -3.729/-0.006 | -1.382/-0.035 | -1.685/-0.042 | -3.870/-0.035 | -2.677/-0.047
no LFRef -2.043/-0.014 | -1.222/-0.001 | -0.428/-0.012 | -0.057/-0.022 | -2.054/-0.024 | -1.798/-0.041
TABLE V
PSNR AND SSIM METRICS FOR MORE COMPLEX CASES (SR FACTOR IS 3).
left  central right BBB Shark Knuffelgooi Ballroom Undo_Dancer | MicroWorld
casel #l1 #2 37.204/0.965 | 44.247/0.984 | 34.085/0.845 | 35.168/0.948 | 38.589/0.972 | 33.852/0.925
case2 #1 #2 34.879/0.951 | 42.895/0.989 | 33.496/0.829 | 33.617/0.912 | 37.136/0.957 | 32.121/0.896
case3 #0 #2 33.962/0.944 | 42.810/0.983 | 33.156/0.823 | 32.924/0.903 | 36.698/0.955 | 30.454/0.851
cased | #0#1  #2 35.903/0.958 | 44.184/0.984 | 33.609/0.831 | 33.964/0.917 | 38.489/0.966 | 32.767/0.909
case5 #0 #2 #3 36.264/0.961 | 44.232/0.984 | 33.730/0.832 | 34.233/0.919 | 38.502/0.967 | 32.829/0.909
case6 #0 #2 #4 35.844/0.958 | 43.893/0.984 | 33.559/0.830 | 33.923/0.915 | 38.269/0.966 | 31.621/0.881
case’ #2 #9 32.167/0.923 | 40.766/0.979 — — 34.541/0.937 | 28.863/0.785

our solution. Tab. V presents the evaluation results of seven
different cases under such complex situations. It is interesting
that in case4 the PSNR and SSIM values are higher than that of
case3. In other words, when introducing one more reference
HR video from a neighboring view, our HR reconstruction
solution could learn more useful texture information from such
neighboring view. All these results show that, no matter the
multiview baseline becomes wider or two reference views are
only from the same side in contrast to the target view (or
even one reference view is missing), our solution still works
well. This especially demonstrates that our solution is easily
adaptable to various complex situations.

E. Our Gradient-aware Evaluation Metric

Here we introduce a novel SR evaluation metric specified
for MR multiview video, where we focus on exploiting the
correlation of the gradient distribution between the target
HR image and its neighboring HR views. For digital images
there is a well-known heavy-tailed distribution [10] when the
logarithmic function of the image’s gradient is calculated,
and such distribution highly reflects how much the image is
reconstructed compared to the original one. For instance, the

left sub-figure of Fig. 9 shows the calculated gradient density
distribution in the horizontal direction, where the distribution
curves dramatically change when a HR image is degraded into
its LR version. Moreover, for the LR image the distribution
range of its gradients also obviously changes, which means
that it changes the diversity of the original texture details.

According to this observation, we first compute the dif-
ference of the gradient densi}ZRdistﬁbution curves betwg%n
the reconstructed HR image I  and the ground truth I .
Secondly, we also compare the distribution range of such
curves to quantify the preservation of the texture diversity of
the original image. We thus formulate the following equation:

HR
) X

_HR HR “HER
Mg = log,((e” FM= 100 s R, (17" 1
e—R]Lly(fHR,IHR )

Here RM,(I"",1"") and RMy(fHR,IHR) are the normal-
ized Root-Mean-Squard-Error (RMSE) of the accumulated
. . . ~HR HR
gradler}g error. gf the x and y directions between I  and I .
GR,(I ,I ) is used to calculate the diversity of gradient

(22)

HR

=

) x GR,(I"" 1 +2).
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Fig. 9. Left: Gradient distribution of HR frames of different viewpoints; Middle and Right: Gradient distribution of reconstructed images using different SR

methods and their cumulative sums.

distribution in the x direction, and it can be computed by
HR

). (23)

Here, in Fig. 9, once we project the gradient distribution curves
onto the horizontal direction, GR2V(-,-) and GRI°(-,-) are
resgectively the overlzg)lped and non-overlapped percentages of
~HR . 7 . . . . . .

I withrespectto I . The diversity of gradient distribution
GRy(-,-) in the y direction shares the same formulation.

HR HR

~HR ~HR ~HR
GR.(I'",1 ")=GR»(I ", )—GRM (I ',I

The calculation of our gradient distribution metric against
the ground truth is shown in the middle and right sub-figures of
Fig. 9. This reveals that the reconstructed gradient distribution
using our solution is very close to the ground truth, while
those using the other methods are farther away. The top of
Tab. VI presents more detailed results compared against other
existing methods. The calculated values M4 corresponding to
the reconstructed gradient distribution demonstrate again that
our solution outperforms other SR methods.

The proposed novel SR evaluation model is applicable to
the practical MR multiview video systems, where there is
no ground truth HR video of the target viewpoint. Note that
here the PSNR and SSIM metrics are unsuitable without the
exact color image of the target HR video. Nevertheless, as
seen in the left sub-figure of Fig. 9, the gradient distribution
curves of different HR videos from different viewpoints are
very close, we thus can easily compute the desired gradient
distribution curve of the target viewpoint, by averaging that of
the given neighboring HR views with appropriate weighting
using following formulation:

Moal() = 3" 5 Maabes | 30 5
i=1 ¢ i=1 ¢

Here D., is the weighting factor of each SR metric obtained
from Eq. 22. As an example, camera #2 has been chosen as the
target camera view, we simply define D., with the normalized
physical distance between this view and its neighboring ones.
After that, we can directly apply our evaluation model on
the reconstructed video according to the calculated gradient
distributions. The bottom sub-table of Tab. VI shows the
evaluation result between our reconstructed image and the

(24)

multiview images. Obviously, the value of Mgd(#o, #1, #3,
#4) is 0.887 using the formulation of Eq. 24, it is very similar
to 0.894. This demonstrates that our metric is very efficient in
those cases without ground truth.

F. Discussions

When employing our solution in extreme operational con-
ditions, including video acquisition with a very sparse camera
setup, complex lighting, unusual noise levels, or heavy lossy
compression, the reconstructed result of our solution might
be affected. To overcome these issues, our approach must
be combined with appropriate multiview color correction,
view synthesis, denoising and smart compression systems. Our
current solution takes the RGB color distance to find the most
similar patches in the reference images. Some recent matching
methods using neural features [44] open an interesting door
in this area. Adopting other potential metrics to improve
both patch matching and representation accuracy could further
increase the final reconstruction quality.

Our gradient-aware evaluation metric aims to investigate the
gradient distribution of the reconstructed HR image. There
might be some extreme cases when the gradient-aware scoring
of the reconstructed HR image is high, while its texture is
unexpected with respect to the LR image and the references.
One potential solution is combining our metric with one
more PSNR metric between the downsampled version of the
reconstructed HR image and the given LR image; however,
such a mixed style might affect the capacity to evaluate how
much the HR gradient distribution is preserved.

Our current solution performs well on various widely-used
multiview videos which are captured by typical multiview
camera rigs. However, once there are no good references from
the neighbouring HR views, the proposed method will produce
low-quality reconstruction results. In this sense, a potential
direction is to effectively exploit useful information from some
external HR datasets such as CrossNet [43] and SRNTT [44].

Finally, our current solution needs to independently process
the 3 color channels, and it spends about 600s for a HD-
resolution image, from which about 83% of the computational
costs are spent on the optimization procedure. Improving
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TABLE VI
OBJECTIVE COMPARISON WITH OUR GRADIENT-AWARE EVALUATION METRIC, THE SR FACTOR IS 4 FOR THE Knuffelgooi SEQUENCE.

gradient range (x direction) gradient range (y direction)

CR T GR™ [ GR, | ™™ rerm Tor™ T ar, | My | Ma

Ground Truth 1 0 1 0 1 0 1 0 1
Bicubic 0.296 0 0296 | 2.117 | 0.325 0 0.325 | 2.464 | 0.675
ScSR [5] 0.409 0 0.409 | 2.080 | 0.442 0 0.442 | 2.091 | 0.693
Kim [50] 0.439 0 0.439 1.891 | 0.526 0 0.526 1.937 | 0.706
SelfExSR [14] 0.553 0 0.553 1.998 | 0.586 0 0.586 1.714 | 0.717
SRCNN [27] 0.503 0 0.503 1.765 | 0.568 0 0.568 1.762 | 0.719
VDSR [51] 0.567 0 0.567 1.694 | 0.608 0 0.608 1.610 | 0.731
SRResNet [29] 0.513 0 0.513 1.781 | 0.528 0 0.528 1.474 | 0.725
EDSR [52] 0.549 0 0.549 1.639 | 0.540 0 0.540 1.533 | 0.731
RCAN [53] 0.509 0 0.509 1.463 | 0.552 0 0.552 1.528 | 0.735
SRGAN [29] 0.590 0 0.590 1.851 | 0.612 0 0.612 1.653 | 0.727
ESRGAN [54] 0.602 0 0.602 1.706 | 0.604 0 0.604 | 1.493 | 0.736

SRNTT-¢; [44] 0.676 0 0.676 0.723 0 0.723 1.035

SRNTT [44] 0.753 0 0.715 | 0.767 0 1.692 | 0.787
CrossNet [43] 0.918 0 0918 1.459 | 0.857 0 0.857 0.794
Ours 0.839 0 0.839 | 0.578 | 0.946 0 0946 | 0.515 | 0.894
#1 1 0.223 0.777 | 0.623 1 0.074 0.926 | 0.560 | 0.871
#3 1 0.091 0.909 | 0.454 | 0.994 0.038 0.956 | 0.504 | 0.902
#0 1 0.223 0.777 | 0.633 1 0.074 0.926 | 0.552 | 0.871
#4 1 0.223 0.777 | 0.553 1 0.070 0.930 | 0.566 | 0.876
M a(#0,#1,#3 #4) — — — — — — — — ] 0.887
M ga(#1,#3) — — — — — — — — 0.882
M 4q(#0,#1) — — — — — — — — 0.871
M gq(#0,#4) — — — — — — — — 10874

the run time performance with algorithm- and hardware-level
acceleration is subject of future investigations.

V. CONCLUSION

This paper has presented a novel SR optimization method
for MR multiview video. By constructing a LLE-based repre-
senting model, our solution can effectively learn the detailed
textures from the given reference HR images. Moreover, our
low-rank constrained regularization ensures that the proposed
method avoids various visual artifacts. The proposed gradient-
aware evaluation for multiview reconstruction, which has also
been presented, is suitable for those cases when the ground
truth is not available, can reasonably consider the spatial cor-
relation of scene textures captured from different viewpoints.
The comprehensive set of experiments demonstrate that our
SR approach outperforms the state-of-the-art methods for MR
multiview video.
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