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Bilateral Attention Network for RGB-D
Salient Object Detection

Zhao Zhang, Zheng Lin, Jun Xu, Wenda Jin, Shao-Ping Lu, and Deng-Ping Fan

Abstract—RGB-D salient object detection (SOD) aims to seg-
ment the most attractive objects in a pair of cross-modal RGB
and depth images. Currently, most existing RGB-D SOD methods
focus on the foreground region when utilizing the depth images.
However, the background also provides important information in
traditional SOD methods for promising performance. To better
explore salient information in both foreground and background
regions, this paper proposes a Bilateral Attention Network
(BiANet) for the RGB-D SOD task. Specifically, we introduce a
Bilateral Attention Module (BAM) with a complementary atten-
tion mechanism: foreground-first (FF) attention and background-
first (BF) attention. The FF attention focuses on the foreground
region with a gradual refinement style, while the BF one recovers
potentially useful salient information in the background region.
Benefited from the proposed BAM module, our BiANet can
capture more meaningful foreground and background cues, and
shift more attention to refining the uncertain details between
foreground and background regions. Additionally, we extend our
BAM by leveraging the multi-scale techniques for better SOD
performance. Extensive experiments on six benchmark datasets
demonstrate that our BiANet outperforms other state-of-the-art
RGB-D SOD methods in terms of objective metrics and subjective
visual comparison. Our BiANet can run up to 80 fps on 224×224
RGB-D images, with an NVIDIA GeForce RTX 2080Ti GPU.
Comprehensive ablation studies also validate our contributions.

Index Terms—Bilateral attention, salient object detection,
RGB-D image.

I. INTRODUCTION

FOR understanding complex scenes in real time, humans
are able to filter visually distinctive, so-called salient,

subset of the available visual information before further pro-
cessing [33], [70]. This capability has long been studied
by researchers in physiology, cognitive psychology, computer
vision, etc. [10], [32], [91]. A salient object can be distinctive
from its neighbors in color, shape, distance, etc. [4], [48].
Capturing the attention-grabbing objects first has been proved
to be effective in wide vision applications, such as visual
tracking [42], [50], image segmentation [31], [36], [69], video
analysis and detection [18], [75], [85], image retrieval [47],
image co-segmentation [15], [16], [87]. Most of the existing
Salient Object Detection (SOD) methods [34], [49], [83]
mainly deal with RGB images. However, they usually produce
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Fig. 1. Comparison of RGB-D SOD results by Foreground-First,
Background-First, and our Bilateral attention mechanisms. Depth infor-
mation provides rich foreground and background relationships. Paying more
attention to foreground helps to predict high-confidence foreground objects,
but may produce incomplete results. Focusing more on background finds more
complete objects, but may introduce unexpected noise. Our BiANet jointly
explores foreground and background cues, and achieves complete foreground
prediction with little background noise.

inaccurate SOD results on the scenarios of similar texture,
complex background, or homogeneous objects [74], [84].

With the popularity of depth sensors in smartphones, depth
maps associated with the corresponding RGB images are
becoming much easier to acquire. Intuitively, the depth infor-
mation, e.g., 3D layout and spatial cues, is crucial for reducing
the ambiguity in the RGB images, and serves as important
supplements to improve the SOD performance [38]. Thus,
RGB-D SOD has received increasing research attention [7],
[19], [23], [25], [62], [79], [81], [82].

For current RGB-D SOD methods, the depth contrast has
served as the most important prior [60], [65], [67], [88], and it
is often used to shift more priority on the foreground regions
which have a strong contrast with the background. For exam-
ple, among early RGB-D SOD works, Fan et al. [20] employ
the depth map as the weighting factor for color contrast. The
recent work of CPFP [88] designs an effectiveness loss to
enhance the depth contrast for better inducing the network
to focus on the foreground regions. More attention on the
foreground region is indeed conducive to learning salient cues.
Meanwhile, as demonstrated in [45], [76], [77], understanding
background information in a scene can help promote the
SOD performance. The foreground and background priors are
largely different. For example, the foreground priors contain
more cues that attract human visual attention, such as sensitive
categories, bright colors, special shapes, closer distance to the
observer, while the background (non-salient) priors are the
opposite. Therefore, it is necessary to explore the foreground
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Fig. 2. The overall architecture of our BiANet. BAM denotes the proposed Bilateral Attention Module, and it also can be selectively replaced by its
multi-scale extension (MBAM). BiANet contains three main steps: two-stream feature extracting, top-down prediction up-sampling, and bilateral attention
residual compensation (by BAM). Specifically, it first extracts the multi-level features { f rgb

i , f d
i }6

i=1 from the RGB and depth streams, and concatenates them
to {Fi}6

i=1. The salient maps of Srgb and Sd are predicted from f rgb
6 and f d

6 for deep supervision. We take the top feature F6 to predicate a coarse salient
map S6. To obtain the accurate and high-resolution result, we up-sample the initial salient map and compensate the details by BAMs in a top-down manner.
BAMs receive the higher-level prediction Si+1 and current level feature Fi as inputs. In a BAM, the foreground-first attention map AF

i and the background-first
attention map AB

i can be calculated according to Si+1. We apply the dual complementary attention maps to explore the foreground and background cues
bilaterally, and jointly infer the residual for refining the up-sampled saliency map.

and background cues respectively and then jointly to mine
the accurate salient region in a scene. Several traditional
methods [39], [39], [78] have predicted salient objects in this
way. Benefiting from together exploring the foreground and
background cues, these methods achieved the leading effect at
that time. However, this simple and effective idea is largely
ignored by current RGB-D SOD networks.

In this paper, we propose a Bilateral Attention Network
(BiANet) to collaboratively learn complementary foreground
and background features from both RGB and depth streams
for better RGB-D SOD performance. As shown in Figure 2,
our BiANet employs a two-stream architecture, and the side
outputs from the RGB and depth streams are concatenated
in multiple stages. Firstly, we use the high-level semantic
features F6 to locate the foreground and background re-
gions S6. However, the initial saliency map S6 is coarse
and in low-resolution. To enhance the coarse saliency map,
we design a Bilateral Attention Module (BAM), which is
composed of the complementary foreground-first (FF) atten-
tion and background-first (BF) attention mechanisms. The
FF shifts attention on the foreground region to gradually
refine its saliency prediction, while the BF focuses on the
background region to recover the potential salient regions
around the boundaries. By bilaterally exploring the foreground
and background cues, the model helps predict more accurately,
as shown in Figure 1. Secondly, we propose a multi-scale
extension of BAM (MBAM) to effectively learn multi-scale
contextual information, and capture both local and global
saliency information to further improve the SOD performance.
Extensive experiments on six benchmark datasets demonstrate
that our BiANet achieves better performance than previous
state-of-the-arts on RGB-D SOD, and is very fast owing to
our simple architecture.

In summary, our main contributions are three-fold:
• We propose a simple yet effective Bilateral Attention

Module (BAM) to explore the foreground and back-
ground cues collaboratively with the rich foreground and
background information from the depth images.

• Our BiANet achieves better performance on six pop-
ular RGB-D SOD datasets under nine standard metrics,
and presents better visual effects (e.g., contains more
details and sharp edges) than the state-of-the-art methods.

• Our BiANet runs at 34∼ 80fps on an NVIDIA GeForce
RTX2080Ti GPU under different settings, and is a feasi-
ble solution for real-world applications.

The remainder of this paper is organized as follows. In §II,
we briefly survey the related work. In §III, we present the
proposed Bilateral Attention Network (BiANet) for RGB-D
salient object detection. Extensive experiments are conducted
in §IV to evaluate its performance when compared with state-
of-the-art RGB-D SOD methods on six benchmark datasets.
The conclusion is given in §V.

II. RELATED WORK

A. RGB-D Salient Object Detection

RGB-D salient object detection (SOD) aims to segment
the most attractive object(s) in a pair of cross-modal RGB
and depth images. Early methods mainly focus on extract-
ing low-level saliency cues from RGB and depth images,
exploring object distance [38], difference of Gaussian [35],
graph knowledge [12], multi-level discriminative saliency fu-
sion [67], multi-contextual contrast [11], [60], background
enclosure [21], etc.. However, these methods easily result in
inaccurate saliency predictions due to the lack of high-level
feature representation. Recently, Qu et al. [64] introduce
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Fig. 3. Visualizing the working mechanism of bilateral attention. The original features are the averaged side-output features in each level. We show the
original features directly multiplied by foreground- and background-first attention maps in left columns of yellow and blue boxes. The right columns of the
two boxes are the further convoluted features in two branches. As can be seen, the foreground-first features focus on foreground region to explore the saliency
cues; while the background-first features shift more attention to the background regions to mine the potentially significant objects. No matter in the features
of foreground- or background-first features, more priority is shifted to the uncertain (low confidence) areas caused by the up-sampling. When fusing the two
branches and jointly inferring, we can see the bilaterally enhanced features have a more accurate understanding where the foreground or background is. Due
to obtaining more attention, the uncertain areas are reassigned to the right attribution by the residual with strong contrast. ‘Pred’ is the prediction of the model.

the deep neural networks (DNNs) to investigate high-level
representations of multiple saliency cues, including local and
global contrast, and color compactness. After that, DNNs have
been largely employed to find the high-level representations of
RGB and depth images in this task [7], [24], [40], [80]. For
instance, some works [8], [28], [71] first extract the RGB and
depth features separately and then fuse them in the shallow,
middle, or deep layers of the network. The methods of [6],
[7], [41], [62] further improve the SOD performance by fusing
cross-modal features in multi-level stages instead of as a one-
off integration. Fan et al. [17] propose that the depth maps
are not always beneficial to salient object detection; thus, they
propose a depth depurator unit to automatically discard some
low-quality depth maps.

B. Foreground and Background Cues

There are great differences in the distribution of foreground
and background, so it is necessary to explore their respective
cues. In traditional methods, some works focus on reasoning
salient areas in foreground and background jointly. Yang et
al. [78] proposed a two-stage method for SOD. It first regards
the top, bottom, left, and right marginal regions of the input
images as background seeds to infer the possible foreground
super-pixels via a graph-based manifold ranking. Then, it ranks
the graph for final prediction depending on the foreground
seeds. Ren et al. [65] adopt boundary connectivity to locate
the initial background regions instead of only assuming the
boundaries as background. Liang et al. [45] introduce the
depth map to take the region that far away from the observer
as the initial background region.

III. PROPOSED BIANET FOR RGB-D SOD

In this section, we first introduce the overall architecture of
our BiANet, and then present the bilateral attention module
(BAM) as well as its multi-scale extension (MBAM).

A. Architecture Overview

As shown in Figure 2, our Bilateral Attention Network
(BiANet) contains three main steps: feature extracting, pre-
diction up-sampling, and bilateral attention residual compen-
sation. We extract the multi-level features from the RGB and
depth streams. With increasing network depth, the high-level
features (e.g., F4) will be more potent for capturing global
context, while it loses the object details. When we up-sample
the high-level predictions, the saliency maps (e.g., S5) will be
blurred, and the edges will become difficult to find. That is,
the prediction value of the pixel location is near 0.5 after the
Sigmoid layer. Thus, we use the proposed Bilateral Attention
Module (BAM) to distinguish these uncertain regions to the
foreground or background.

1) Feature extracting: We encode RGB and depth infor-
mation with two streams. Specifically, both the RGB and
depth streams employ five convolutional blocks from VGG-
16 [66] as the standard backbone and attach an additional
convolutional group with three convolutional layers to predict
the saliency maps, respectively. Unlike previous works [8],
[28], [92], we explore the cross-modal fusion of RGB and
depth features at multiple stages, rather than fusing them once
in low or high stage. The i-th side output f rgb

i from the RGB
stream and f d

i from the depth stream are concatenated as a
feature tensor Fi. Note that F6 is concatenated by M( f rgb

5 ) and
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Fig. 4. Comparison of the high-level features captured by MBAM and
BAM. The second row is the averaged foreground-first features from the
model where the MBAMs are applied in the top three levels (marked with
red numbers). The third row is the averaged foreground-first features obtained
from the model in which all levels are armed with BAMs. We can see that,
compared with applying the BAMs, MBAMs in higher levels capture more
complete information, which is conducive to the object locating as shown in
the first row.

M( f d
5 ), where M(·) denotes the max-pooling operation. The

coarse saliency map S6 is predicted from F6 using two 3×3
convolutional layers, and {F1,F2, · · · ,F5} are prepared for the
BAMs in our BiANet to further refine the up-sampled saliency
maps, by distinguishing the uncertain regions as foreground or
background in a top-down manner.

2) Prediction up-sampling: The initial saliency map pre-
dicted from the high-level features is coarse in low-resolution,
but useful to predict the initial position of the foreground and
background, since it contains rich semantic information. To
refine the basic saliency map S6, a lower-level feature F5 with
more details is used to predict the residual component between
the higher-level prediction and the ground-truth (GT) with the
help of BAM. We add the predicted residual component R5 to
the up-sampled higher-level prediction S6, and obtain a refined
prediction S5, etc., that is,

Si = Ri +U(Si+1), i ∈ {1, . . . ,5}, (1)

where U(·) means up-sampling. Finally, our BiANet obtains a
saliency map by S = σ(S1), where σ(·) is a Sigmoid function.

3) Bilateral attention residual compensation: To get better
residuals and distinguish up-sampled foreground and back-
ground regions, we design a bilateral attention module (BAM)
to enable our BiANet to discriminate the foreground and
background. In our BAM, the higher-level prediction serves
as a foreground-first attention (FF) map, and the reversed
prediction serves as background-first (BF) attention map to
combine the bilateral attention on foreground and background.
In Figure 3, one can see that the residual generated by BAM
possesses high contrast at the object boundaries. More details
are described in Sections III-B and III-C.

4) Loss function: Deep supervision is widely used in the
SOD task [22], [30]. It clarifies the optimization goals for each

step of the network, and accelerates the convergence of train-
ing. For quick convergence, we also apply deep supervision in
the depth stream output Sd , RGB stream output Srgb, and each
top-down side output {S1,S2, · · · ,S6}. The total loss function
of our BiANet is

L=
∑6

i=1
wiLce (σ (Si) ,GT)+wdLce (σ (Sd) ,GT)

+wrgbLce
(
σ
(
Srgb

)
,GT

)
,

(2)

in which wi,wd , and wrgb are the weight coefficients and
simply set to 1 in our experiments. Lce(·) is the binary cross
entropy loss, which is formulated as

Lce(X,Y)=− 1
N

N∑
i=1

(
yilog(xi)+(1− yi)log(1− xi)

)
. (3)

In the above equation, xi ∈ X and yi ∈ Y, and N denotes the
total pixel number.

B. Bilateral Attention Module (BAM)
Given the initial foreground and background, how to refine

the prediction using higher-resolution cross-modal features is
the focus of this paper. Considering that the distribution of
foreground and background are quite different, we design a
bilateral attention module using a pair of reversed attention
components to learn features from the foreground and back-
ground respectively, and then jointly refine the prediction. As
can be seen in Figure 2, to focus more on the foreground,
we use the up-sampled prediction from the higher-level as
foreground-first attention (FF) maps {AF}5

i=1 after they are
activated by Sigmoid function, and the background-first atten-
tion (BF) maps {AB}5

i=1 are generated by subtracting FF maps
from matrix E, in which all the elements are 1. That is, AF

i = σ

(
U(Si+1)

)
,

AB
i = E−σ

(
U(Si+1)

)
,

i ∈ {1,2,3,4,5}. (4)

Then, as shown in Figure 2, we apply FF and BF to weight the
side-output features in two branches, respectively, and further
predict the residual component jointly.

Ri = PR
i
([
PF

i
(
F̂i�AF

i
)
,PB

i
(
F̂i�AB

i
)])

. (5)

In the above equation, � denotes element-wise multiplication.
F̂i is the channel-reduced feature of Fi using 32 1×1 convo-
lutions to reduce the computational cost. PF

i and PB
i are the

foreground-first and background-first branches. They consist
of 32 convolutional kernels with a size of 3×3 and a ReLU
layer. The [X,Y] means concatenating the X and Y in channel-
wise. PR

i is the prediction layer to output a single channel
residual map via 3× 3 kernels basing on the concatenated
features. Once the Ri is obtained, the refined prediction Si is
obtained via Equation 1.

To better understand the working mechanism of BAM, in
Figure 3, we visualize the channel-wise averaged features from
BAMs in different levels. In BAM, the original features will be
first fed into two branches by multiply the FF and BF attention
maps, respectively. The result of the direct multiplication is
illustrated in the left half of the yellow (FF features) and blue
(BF features) boxes. We can see that FF branch shifts attention
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to the foreground area predicted from its higher level to
explore foreground saliency cues. After a convolutional layer,
more priority is given to the uncertain area. Complementarily,
BF branch focuses on the background area to explore the
background cues, looking for possible salient objects within
it. In our BiANet, the top-down prediction up-sampling is a
process in which the resolution of salient objects is gradually
increased. It will result in uncertain coarse boundaries. Im-
proving the quality of object edge segmentation is important
for segmentation tasks. Many methods, based on active con-
tours [52], [53], [55]–[58], boundary supervision [43], [68],
[90], etc., are proposed to shift more attention on boundary
regions. That is coincident with the original intention and
advantages of our cascaded bilateral attention model. We can
see that both FF and BF features focus on these boundaries.
The low-level and high-resolution FF branch will eliminate
the overflow of the uncertain area, while the BF branch will
eliminate the uncertain area which does not belong to the
background. That is an important reason why BiANet performs
better on detail and is prone to predicting sharp edges. After
the joint inferring, we can see the bilaterally enhanced features
contain more discriminative spatial information of foreground
and background. The generated residual components are with
sharp contrast on the edges, and then suppress the background
area and strengthen the foreground regions.

C. Multi-Scale Extension of BAM (MBAM)

Salient objects in a scene are various in location, size, and
shape. Thus, exploring the multi-scale context in high-level
layers benefits for understanding the scene [72], [89]. To this
end, we extend our BAM with a multi-scale version, in which
groups of dilated convolutions are used to extract pyramid
representations from the undetermined foreground and back-
ground areas. Specifically, the module can be described as

Ri = PR
i

([
t4

j=1DF
i j
(
Fi�AF

i
)
,t4

j=1DB
i j
(
Fi�AB

i
)])

, (6)

where t means a concatenate operation. DF
i1 and DB

i1 consist
of 1×1 kernels with 32 channels and a ReLU layer. {DF

i j}4
j=2

and {DB
i j}4

j=2 are groups of dilated convolutions, with rates of
3, 5, and 7. They all consist of 3×3 kernels with 32 channels
and a ReLU layer.

We recommend applying the MBAM in high-level cross-
modal features, such as {F3,F4,F5}, which need different
sizes of receptive fields to explore multi-scale context. MBAM
effectively improves the detection performance but introduces
a certain computational cost. Thus, the number of MBAM
should be a trade-off in practical applications. In Section
IV-C3, we discuss in detail how the number of MBAM
changes the detection effect and calculation cost.

In order to intuitively observe the gain effect brought by
MBAM, we visualize the averaged foreground-first feature
maps from MBAMs and BAMs in Figure 4. In the second
row, the feature maps are obtained from the model with three
MBAMs in its top three levels, while in the last row, all
the feature maps are collected from BAMs. We can see the
target object (horse) account for a large proportion of the
scene. Without the ability to perceive multi-scale information

effectively, the BAM fails to capture the accurate global salient
regions in high levels and leads to incomplete prediction
finally. When introducing the multi-scale extension, we can see
higher-level features achieve stronger spatial representation,
supporting locating a more complete salient object.

D. Implementation Details

1) Settings: We apply the MBAM in the high-level side
outputs {F3,F4,F5} during implementation, and use bilinear
interpolation in all interpolation operations. The initial param-
eters of our backbone are loaded from a VGG-16 network pre-
trained on ImageNet. Our BiANet is based on PyTorch [59].

2) Training: Following D3Net [17], we use the training set
containing 1485 and 700 image pairs from the NJU2K [35]
and NLPR [60] datasets, respectively. The rest samples of
NJU2K are used as the validation set. We employ the Adam
optimizer [37] with an initial learning rate of 0.0001, β1 = 0.9,
and β2 = 0.99. The batch size is set to 8. We train our BiANet
until 30 epochs for VGG backbone and 50 epochs for ResNet
and Res2Net backbone. The training images are resized to
224×224, also during the test. The output saliency maps are
resized back to the original size for evaluation. Accelerated
by an NVIDIA GeForce RTX 2080Ti, our BiANet (VGG-
16 backbone) is trained for less than three hours and runs at
34∼80 fps (with different numbers of MBAMs) for the inputs
with 224×224 resolution.

IV. EXPERIMENTS

A. Evaluation Protocols

1) Evaluation datasets: We conduct experiments on six
widely used RGB-D based SOD datasets. NJU2K [35] and
NLPR [60] are two popular large-scale RGB-D SOD datasets
containing 1985 and 1000 images, respectively. DES [9] con-
tains 135 indoor images with fine structures collected with
Microsoft Kinect [86]. STERE [51] contains 1000 internet
images, and the corresponding depth maps are generated by
stereo images using a sift flow algorithm [46]. SSD [93] is
a small-scale but high-resolution dataset with 400 images in
960×1080 resolution. SIP [17] is a high-quality RGB-D SOD
dataset with 929 person images.

2) Evaluation metrics: We employ nine metrics to com-
prehensively evaluate these methods. Precision-Recall (PR)
curve [63] shows the precision and recall performances of
the predicted saliency map at different binary thresholds. F-
measure (Fβ ) [1] is computed by the weighted harmonic mean
of the thresholded precision and recall. We employ maximum
F-measure as suggest in [4]. Mean Absolute Error (MAE,
M) [61] directly estimates the average pixel-wise absolute
difference between the prediction and the binary ground-truth
map. S-measure (Sα ) [13] is an advanced metric, which takes
the region-aware and object-aware structural similarity into
consideration. E-measure (Eξ ) [14] is the recent proposed
Enhanced alignment measure in the binary map evaluation
field, which combines local pixel values with the image level
mean value in one term, jointly capturing image-level statistics
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Fig. 5. PR curves of our BiANet and other 13 state-of-the-art methods across 6 datasets. The node on each curve denotes the precision and recall value
used for calculating maximal F-measure.

and local pixel matching information. We take the maximum
E-measure following [5], [41]. Mean-Square Error (MSE)
measures the average of the squares of the errors. Peak Signal-
to-Noise Ratio (PSNR) is the ratio between the maximum
possible power of a signal and the power of corrupting noise
that affects the fidelity of its representation. The higher PSNR,
the better the quality of prediction. Structural Similarity
(SSIM) evaluates the similarity of the two images in terms
of luminance, contrast, and structure. The metrics of MSE,
PSNR, SSIM are widely used in watermarking [2], [3], image
compression [73], image enhancement [44], etc..

B. Comparison with State-of-the-Arts

1) Comparison methods: We compared with 13 state-of-
the-art RGB-D SOD methods, including 4 traditional methods:
ACSD [35], LBE [21], DCMC [12], MDSF [67], and SE [27],
and 9 DNN-based methods: DF [64], AFNet [71], CTMF [28],
MMCI [8], PCF [6], TANet [7], CPFP [88], DMRA [62], and
D3Net [17]. The codes and saliency maps of these methods
are provided by the authors.

2) Quantitative evaluation: The complete quantitative eval-
uation results are listed in Table I. The comparison methods
are presented from right to left according to the comprehensive
performance of these metrics, where the lower the value of
MAE (M), the better the model’s effect. The other metrics
are the opposite. We also plot the PR curves of these methods
in Figure 5. One can see that our BiANet achieves remarkable
advantages over the comparison methods. DMRA [62] and
D3Net [17] are well-matched in these datasets. On the large-
scaled NJU2K [35] and NLPR [60] datasets, our BiANet
outperforms the second best with ∼3% improvement on Fβ .
On the DES [9] dataset, Compared to methods that are heavily
dependent on depth information, our proposed BiANet also has
a 3.8% improvement on Fβ . This indicates that our BiANet
can make more efficient use of depth information. Although

the SSD [93] dataset is high-resolution, the quality of the depth
map is poor. Our BiANet still exceeds D3Net [17], which is
specifically designed for robustness to low-quality depth maps.
Our BiANet also performs the best on the SIP [17], which is a
challenging dataset with complex scenes and multiple objects.

3) Qualitative results: To further demonstrate the effec-
tiveness of our BiANet, we visualize the saliency maps of
our BiANet and other five methods with highest quantitative
results in Figure 6. One can see that the target object in
the 1st column is tiny, and its white shoes and hat are hard
to distinguish from the background. Our BiANet effectively
utilizes the depth information, while the others are disturbed
by RGB background clutter. The inputs in the 2nd column
are challenging because the depth map is mislabeled, and
the RGB image was taken in a dark environment with low
contrast. Our BiANet successfully detects the target sculpture
and eliminates the interference of flowers and the base of the
sculpture, while D3Net mistakenly detects a closer rosette,
and DMRA loses the part of the object that is similar to the
background. The 3rd column shows the ability of our BiANet
to detect complex structures and textureless [54] of salient
objects. Among these methods, only our BiANet completely
discover the chairs, including the fine legs. The 4th column is
a multi-object scene. Because there are no depth differences
between the three salient windows below and the wall, they
are not reflected on the depth map, but the three windows
above are clearly observed on the depth map. In this case,
the depth map will mislead subsequent segmentation. Our
BiANet detects multiple objects from RGB images with less
noise. The 5th column is also a multi-object scene. The bottom
half of the depth map is confused with the interference from
the ground. Thanks to the top-down level-by-level refining
of uncertain regions, BiANet detects most of the details,
such as the leg area and the person in the middle. The last
column is a large-scale object whose color and depth map
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TABLE I
QUANTITATIVE COMPARISONS OF OUR BIANET WITH NINE DEEP-LEARNING-BASED METHODS AND FOUR TRADITIONAL METHODS ON SIX POPULAR

DATASETS IN TERM OF S-MEASURE (Sα ), MAXIMUM F-MEASURE (Fβ ), MAXIMUM E-MEASURE (Eξ ), MEAN ABSOLUTE ERROR (MAE, M),
MEAN-SQUARE ERROR (MSE), PEAK SIGNAL-TO-NOISE RATIO (PSNR), AND STRUCTURAL SIMILARITY (SSIM). ↑ MEANS THAT THE LARGER THE

NUMERICAL VALUE, THE BETTER THE MODEL, WHILE ↓ MEANS THE OPPOSITE. FOR TRADITIONAL METHODS, THE STATISTICS ARE BASED ON OVERALL
DATASETS RATHER ON THE TEST SET. WE SHOW THE PERFORMANCES OF OUR BIANET BASED ON DIFFERENT BACKBONES. VGG11 AND VGG16 IS THE
VGG NETWORK PROPOSED IN [66]. RES50 IS RESNET-50 PROPOSED IN [29]. RES250 IS RES2NET-50 PROPOSED IN [26]. THE BIANET WITH VGG-16
BACKBONE IS USED FOR COMPARISON. WE USE BOLD TO HIGHLIGHT THE BEST RESULTS AND UNDERLINE TO HIGHLIGHT THE SECOND BEST RESULTS.

ACSD LBE DCMC SE DF AFNet CTMF MMCI PCF TANet CPFP DMRA D3Net BiANet (Ours)
Metric [35] [21] [12] [27] [64] [71] [28] [8] [6] [7] [88] [62] [17] vgg16 vgg11 Res50 Res250

N
JU

2K
[ 3

5]

Sα ↑ 0.699 0.695 0.686 0.664 0.763 0.772 0.849 0.858 0.877 0.878 0.879 0.886 0.893 0.915 0.912 0.917 0.923
Fβ ↑ 0.711 0.748 0.715 0.748 0.804 0.775 0.845 0.852 0.872 0.874 0.877 0.886 0.887 0.920 0.913 0.920 0.925
Eξ ↑ 0.803 0.803 0.799 0.813 0.864 0.853 0.913 0.915 0.924 0.925 0.926 0.927 0.930 0.948 0.947 0.949 0.952
M ↓ 0.202 0.153 0.172 0.169 0.141 0.100 0.085 0.079 0.059 0.060 0.053 0.051 0.051 0.039 0.040 0.036 0.034

MSE↓ 0.105 0.117 0.106 0.127 0.079 0.087 0.045 0.044 0.039 0.041 0.041 0.043 0.035 0.030 0.030 0.029 0.027
PSNR↑ 10.76 11.13 11.09 10.84 12.67 12.55 14.75 15.20 16.44 16.33 16.60 16.93 17.22 18.96 18.71 19.14 19.48
SSIM↑ 0.336 0.811 0.512 0.691 0.546 0.822 0.689 0.699 0.822 0.832 0.891 0.903 0.866 0.913 0.909 0.923 0.926

ST
E

R
E

[5
1]

Sα ↑ 0.692 0.660 0.731 0.708 0.757 0.825 0.848 0.873 0.875 0.871 0.879 0.835 0.889 0.904 0.899 0.905 0.908
Fβ ↑ 0.669 0.633 0.740 0.755 0.757 0.823 0.831 0.863 0.860 0.861 0.874 0.847 0.878 0.898 0.892 0.899 0.904
Eξ ↑ 0.806 0.787 0.819 0.846 0.847 0.887 0.912 0.927 0.925 0.923 0.925 0.911 0.929 0.942 0.941 0.943 0.942
M ↓ 0.200 0.250 0.148 0.143 0.141 0.075 0.086 0.068 0.064 0.060 0.051 0.066 0.054 0.043 0.045 0.040 0.039

MSE↓ 0.099 0.117 0.084 0.101 0.078 0.062 0.046 0.038 0.040 0.041 0.041 0.057 0.037 0.032 0.034 0.032 0.031
PSNR↑ 10.67 9.65 11.97 11.57 12.51 13.97 14.40 15.73 15.77 15.54 16.26 14.39 16.71 17.78 17.21 17.85 18.05
SSIM↑ 0.318 0.213 0.523 0.668 0.487 0.849 0.682 0.739 0.801 0.837 0.894 0.885 0.850 0.902 0.898 0.915 0.918

D
E

S
[ 9

]

Sα ↑ 0.728 0.703 0.707 0.741 0.752 0.770 0.863 0.848 0.842 0.858 0.872 0.900 0.898 0.931 0.943 0.930 0.942
Fβ ↑ 0.756 0.788 0.666 0.741 0.766 0.728 0.844 0.822 0.804 0.827 0.846 0.888 0.880 0.926 0.938 0.927 0.942
Eξ ↑ 0.850 0.890 0.773 0.856 0.870 0.881 0.932 0.928 0.893 0.910 0.923 0.943 0.935 0.971 0.979 0.968 0.978
M ↓ 0.169 0.208 0.111 0.090 0.093 0.068 0.055 0.065 0.049 0.046 0.038 0.030 0.033 0.021 0.019 0.021 0.017

MSE↓ 0.058 0.071 0.058 0.058 0.053 0.058 0.029 0.033 0.035 0.032 0.029 0.025 0.021 0.014 0.012 0.015 0.013
PSNR↑ 12.74 11.94 12.85 13.70 13.85 14.08 16.52 16.14 16.85 17.03 17.96 18.77 19.17 20.50 20.61 20.05 20.59
SSIM↑ 0.181 0.134 0.505 0.700 0.557 0.866 0.774 0.655 0.871 0.885 0.919 0.937 0.901 0.943 0.943 0.947 0.951

N
LP

R
[6

0]

Sα ↑ 0.673 0.762 0.724 0.756 0.802 0.799 0.860 0.856 0.874 0.886 0.888 0.899 0.905 0.925 0.927 0.926 0.929
Fβ ↑ 0.607 0.745 0.648 0.713 0.778 0.771 0.825 0.815 0.841 0.863 0.867 0.879 0.885 0.914 0.914 0.917 0.919
Eξ ↑ 0.780 0.855 0.793 0.847 0.880 0.879 0.929 0.913 0.925 0.941 0.932 0.947 0.945 0.961 0.962 0.962 0.963
M ↓ 0.179 0.081 0.117 0.091 0.085 0.058 0.056 0.059 0.044 0.041 0.036 0.031 0.033 0.025 0.024 0.023 0.023

MSE↓ 0.069 0.053 0.061 0.057 0.041 0.049 0.029 0.032 0.029 0.027 0.028 0.026 0.022 0.018 0.018 0.018 0.018
PSNR↑ 12.61 15.48 13.84 15.09 16.18 15.53 16.97 16.82 18.07 18.41 19.26 19.17 19.61 21.10 21.00 21.14 21.21
SSIM↑ 0.248 0.896 0.544 0.743 0.626 0.881 0.770 0.730 0.869 0.881 0.922 0.933 0.901 0.941 0.941 0.948 0.949

SS
D

[9
3]

Sα ↑ 0.675 0.621 0.704 0.675 0.747 0.714 0.776 0.813 0.841 0.839 0.807 0.857 0.865 0.867 0.861 0.863 0.863
Fβ ↑ 0.682 0.619 0.711 0.710 0.735 0.687 0.729 0.781 0.807 0.810 0.766 0.844 0.846 0.849 0.839 0.843 0.843
Eξ ↑ 0.785 0.736 0.786 0.800 0.828 0.807 0.865 0.882 0.894 0.897 0.852 0.906 0.907 0.916 0.899 0.911 0.901
M ↓ 0.203 0.278 0.169 0.165 0.142 0.118 0.099 0.082 0.062 0.063 0.082 0.058 0.059 0.051 0.054 0.048 0.050

MSE↓ 0.107 0.138 0.102 0.128 0.089 0.104 0.066 0.049 0.042 0.044 0.069 0.050 0.040 0.040 0.043 0.040 0.042
PSNR↑ 10.61 9.44 11.61 11.18 12.55 12.01 13.22 14.84 16.22 15.94 14.96 15.95 16.68 17.72 17.34 17.49 17.62
SSIM↑ 0.257 0.195 0.491 0.663 0.542 0.811 0.706 0.732 0.846 0.850 0.861 0.900 0.865 0.902 0.894 0.914 0.911

SI
P

[ 1
7]

Sα ↑ 0.732 0.727 0.683 0.628 0.653 0.720 0.716 0.833 0.842 0.835 0.850 0.806 0.864 0.883 0.877 0.887 0.889
Fβ ↑ 0.763 0.751 0.618 0.661 0.657 0.712 0.694 0.818 0.838 0.830 0.851 0.821 0.861 0.890 0.882 0.890 0.893
Eξ ↑ 0.838 0.853 0.743 0.771 0.759 0.819 0.829 0.897 0.901 0.895 0.903 0.875 0.910 0.925 0.924 0.926 0.928
M ↓ 0.172 0.200 0.186 0.164 0.185 0.118 0.139 0.086 0.071 0.075 0.064 0.085 0.063 0.052 0.054 0.047 0.047

MSE↓ 0.093 0.083 0.107 0.137 0.121 0.107 0.098 0.055 0.053 0.058 0.055 0.078 0.048 0.043 0.044 0.040 0.040
PSNR↑ 11.12 11.38 10.56 10.13 10.35 11.37 11.32 14.13 14.83 14.47 15.04 13.66 15.56 17.14 16.61 17.33 17.47
SSIM↑ 0.454 0.285 0.412 0.706 0.459 0.816 0.666 0.738 0.838 0.834 0.892 0.874 0.859 0.906 0.900 0.918 0.918

are not distinguished. Large scale, low color contrast, and
lack of discriminative depth information make the scene very
challenging. Fortunately, our BiANet is robust in this scene.

C. Ablation Study and Analysis
In this section, we mainly investigate: 1) the benefits of bi-

lateral attention mechanism to our BiANet; 2) the effectiveness
of BAM in different levels to our BiANet for RGB-D SOD;
3) the further improvements of MBAM in different levels to
our BiANet; 4) the benefits of combining BAM and MBAM
for RGB-D SOD; 5) the impact of different backbones to our

BiANet for RGB-D SOD; 6) the robustness in detecting non-
frontmost objects.

1) Effectiveness of bilateral attention: We conduct ablation
studies on the NJU2K [35] and STERE [51] datasets to
investigate the contributions of different mechanisms in the
proposed method. These two datasets contain large-scaled
samples and varied scenes; thus, evaluating on these two
datasets can better reflect the performance of different settings.
The baseline model used here contains a VGG-16 backbone
and a residual refine structure. It takes RGB images as input
without depth information. The performance of our basic net-
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Fig. 6. Visual comparison of BiANet with other top 5 methods. The inputs include difficult scenes of tiny objects (column 1), complex background
(column 1 and 2), complex texture (column 3), low contrast (column 2 and 6), low-quality or confusing depth (column 2, 4, and 6), and multiple objects
(column 4 and 5).

work without any additional mechanisms is illustrated in Table
II No. 1. Based on the network, we gradually add different
mechanisms and test various combinations. These candidates
are depth information (Dep), foreground-first attention (FF),
background-first attention (BF), and multi-scale extension
(ME). In Table II No. 3, by applying FF, the performance
is improved to some extent. It benefits from the foreground

cues being learned effectively by shifting the attention to the
foreground objects. We get a similar accuracy when using the
BF only, as shown in No. 4. It excels at distinguishing between
salient areas and non-salient areas in the background, and can
help to find more complete regions of the salient object in the
uncertain background; however, too much attention focusing
on the background and without a good understanding of the
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TABLE II
ABLATION ANALYSIS FOR THE PROPOSED ARCHITECTURE ON THE

NJU2K AND STERE DATASETS. THE CANDIDATE MECHANISMS ARE DEEP
INFORMATION (DEP), FOREGROUND-FIRST ATTENTION (FF),

BACKGROUND-FIRST ATTENTION (BF), AND MULTI-SCALE EXTENSION
(ME). ME IS APPLIED ON THE TOP THREE LEVEL FEATURES.

#
Candidates NJU2K [35] STERE [51]

Dep FF BF ME Fβ ↑ Sα ↑ Fβ ↑ Sα ↑
No. 1 0.881 0.885 0.882 0.893

No. 2 X 0.903 0.904 0.887 0.894

No. 3 X X 0.908 0.908 0.895 0.901

No. 4 X X 0.910 0.908 0.892 0.900

No. 5 X X X 0.915 0.913 0.897 0.903

No. 6 X X X 0.913 0.911 0.900 0.904

No. 7 X X X 0.912 0.911 0.893 0.902

No. 8 X X X 0.905 0.903 0.894 0.901

No. 9 X X X X 0.920 0.915 0.898 0.904

foreground cues, it leads that sometimes background noise is
introduced. When we combine FF together with BF to form
our BAM and apply it in all side outputs, the performance
boosts. We can see that BAM increases S-measure by 0.9%
and maximal F-measure by 1.2% compared with No. 2. When
we replace the top three levels BAMs with MBAMs, the
performance further improved. In order to further verify the
importance of mining the foreground and background cues
simultaneously, we remove the background-first or foreground-
first attention while keeping other components unchanged,
and record the results in No. 6 and No. 7. We can see that
without the foreground-first or background-first attention, the
performance of the proposed model will be reduced. Moreover,
the depth information is also critical to bilateral attention. It
provides rich foreground and background relationships. We
remove the depth information in No. 8, where the prediction
accuracy is damaged.

2) Effectiveness of BAM with different levels: In order to
verify that our BAM module is effective at each feature level,
we apply BAM to each side output of the No. 2 model’s
feature extractor, respectively. That is, in each experiment,
BAM is applied to one side output, while the others un-
dergo several convolution groups without being enhanced by
foreground-first/background-first attention maps. Specifically,
for replacing BAM, the channel-reduced feature undergoes two
convolution groups, each of which consists of a convolutional
layer with 32 kernels and a ReLU layer. Then, a single
convolutional layer follows the two groups to predict the
residual. From Table III, we can see that the BAMs in
every layer facilitate a universal improvement on detection
performance. In addition, we find that BAM applied in the
lower levels contributes more to the results. In order to further
confirm our observations, we apply BAM in all the five side-
output features as the baseline models. Then, we remove one
of the five BAMs, and the performances are shown in Table
III. We can see that removing BAM from low-level features
will cause performance damage.

3) Effectiveness of MBAM in different levels: In Table
II, compared with No. 5, No. 9 carry out the multi-scale
extension on its higher three levels {F3,F4,F5}. This extension
effectively improves the performance of the model. In order to
better show the gain of MBAM in each level features, similar
to the above section, we apply MBAM to each side output
of the No. 2 model, respectively. The experimental results are
recorded in Table III. Similarly, we also apply MBAM in all
the five side-output features as the baseline model. Then, we
remove one of the five MBAM to observe performance loss.
It can be seen that different levels of MBAM bring different
degrees of improvement to the results. Comparing BAM and
MBAM, we can see a more interesting phenomenon that the
BAM applied in the lower level brings more improvement
while the MBAM applied in the higher level is more effective.

4) Cooperation between BAM and MBAM: The observa-
tion above guides us that when using BAM and MBAM in
cooperation, we should give priority to multi-scale expansion
of higher-level BAM. Therefore, we expand BAM from top
to bottom until all BAMs are converted into MBAMs. We
record the final detection performance and calculation cost
during the gradual expansion in Table IV. We start from the
highest level, and gradually increase the number of MBAMs
to three. We can see that the effect on the model is a steady
improvement, but the computing cost is also increased. At
the lower levels, adding MBAM has no obvious effect. This
phenomenon is in line with our expectation. Besides, due to
the high resolution, the extension of lower-level BAM will
increase the calculation cost and reduce the robustness. The
selection of the number of MBAM needs to balance the
accuracy and speed requirements of the application scenario.
In scenarios with higher speed requirements, we recommend
not to use MBAM. Our most lightweight model can achieve
∼80fps while ensuring significant performance advantages.
The parameter size and FLOPs are superior to the SOTA
methods D3Net [17] and DMRA [62]. In scenarios where
high accuracy is required, we suggest applying less than three
MBAMs on higher-level features.

5) Performances under different backbones: We implement
the BiANet based on some other widely-used backbones to
demonstrate the effectiveness of the proposed bilateral atten-
tion mechanism on different feature extractors. Specifically, in
addition to VGG-16 [66], we provide the results of BiANet
on VGG-11 [66], ResNet-50 [29], and Res2Net-50 [26].
Compared with VGG-16, VGG-11 is a lighter backbone. As
shown in Table I, although the accuracy is slightly lower
than VGG-16, it still reaches SOTA with a faster speed.
BiANet with stronger backbones will bring more remarkable
improvements. For example, when we employ ResNet-50
(like D3Net [17]) as backbone, our BiANet brings 1.5%
improvement on NJU2K [35] in terms of the MAE compared
with the D3Net [17]. When armed with Res2Net-50 [26],
BiANet achieves 3.8% improvement on NJU2K [35] in terms
of the maximal F-measure compared with the SOTA methods.

6) Robustness of detecting non-frontmost objects: In practi-
cal applications, our BiANet does not require the salient object
to be frontmost in a scene. BiANet jointly explores the saliency
cues from the RGB image and depth map. When the depth
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TABLE III
EFFECT OF ACCURACY BY ADDING OR REMOVING BAM/MBAM IN EACH SIDE OUTPUTS. ‘NONE’ DENOTES THE BASELINE MODEL WITHOUT ANY

BAM/MBAM. THAT IS, ‘NONE’ IS THE NO.2 OF TABLE II. ‘W/ Li’ MEANS WE ADD THE BAM/MBAM INTO THE i-TH LEVEL BASED ON THE BASELINE
MODEL ‘NONE’. ‘ALL’ IS THE BASELINE MODEL WHICH IS WITH BAM/MBAM IN ALL LEVELS. ‘W/O Li’ MEANS WE REMOVE THE BAM/MBAM FROM

THE i-TH LEVEL BASED ON THE BASELINE MODEL ‘ALL’.

Metric w/ L1 w/ L2 w/ L3 w/ L4 w/ L5 None w/o L1 w/o L2 w/o L3 w/o L4 w/o L5 All

BAM

Sα ↑ 0.908 0.909 0.908 0.906 0.904 0.904 0.911 0.911 0.913 0.912 0.913 0.913

Fβ ↑ 0.910 0.911 0.909 0.905 0.904 0.903 0.914 0.914 0.915 0.915 0.915 0.915

Eξ ↑ 0.944 0.945 0.943 0.943 0.941 0.942 0.945 0.948 0.947 0.947 0.948 0.948

M ↓ 0.043 0.043 0.044 0.044 0.045 0.046 0.041 0.041 0.041 0.042 0.041 0.041

MBAM

Sα ↑ 0.908 0.909 0.910 0.910 0.910 0.904 0.916 0.916 0.914 0.913 0.912 0.916

Fβ ↑ 0.909 0.912 0.909 0.911 0.911 0.903 0.920 0.918 0.916 0.914 0.913 0.919

Eξ ↑ 0.944 0.945 0.945 0.946 0.947 0.942 0.951 0.947 0.948 0.945 0.946 0.948

M ↓ 0.044 0.043 0.042 0.042 0.042 0.046 0.038 0.039 0.039 0.040 0.040 0.039

TABLE IV
ACCURACY AND CALCULATION COST ANALYSIS FOR MBAM. ×0∼×5 MEANS THE NUMBER OF MBAMS, WHICH ARE APPLIED FROM HIGH LEVELS

TO LOW LEVELS. fps DENOTES FRAMES PER SECOND. PARAMS MEANS THE SIZE OF PARAMETERS. FLOPS = FLOATING POINT OPERATIONS. THE
ACCURACY METRICS Fβ AND M ARE EVALUATED ON THE NJU2K DATASET. THE CALCULATION COST METRICS fps AND FLOPS ARE TESTED AT

224×224 RESOLUTION. TRAIN MEANS THE TRAINING TIME. NOTE THAT, ×3 IS THE DEFAULT SETTING IN SECTION IV-B.

×0 ×1 ×2 ×3 ×4 ×5 D3Net [17] DMRA [62]
Fβ ↑ 0.914 0.917 0.918 0.920 0.920 0.919 0.887 0.886
M ↓ 0.041 0.040 0.040 0.039 0.038 0.039 0.051 0.051
fps↑ ∼80 ∼65 ∼55 ∼50 ∼42 ∼34 ∼55 ∼40

Params ↓ 45.0M 46.9M 48.7M 49.6M 50.1M 50.4M 145.9M 59.7M
FLOPs ↓ 34.4G 35.0G 36.2G 39.1G 45.2G 58.4G 55.7G 121.0G

Train ↓ 0.58h 0.66h 0.81h 1.05h 1.49h 2.29h - -

RGB Depth GT Prediction

Fig. 7. Detecting non-frontmost salient objects using BiANet. The salient
objects are behind the rock (see the dinosaur in the first row), not the frontmost
person (the second row), or are behind the flowers (the last two rows). We can
see that the predictions of BiANet are robust to non-frontmost salient object
detection problems.

map brings distance ambiguity, our BiANet still works well
in most cases relying on other cues, such as centrality, shape in
depth map, and rich cues from the RGB information. Examples
in Figure 7 demonstrate the robustness of our BiANet when
handling such scenes.

D. Failure Case Analysis
In Figure 8, we illustrate some failure cases when our

BiANet works in some extreme environments. BiANet ex-
plores the saliency cues bilaterally in the foreground and
background regions with the relationship provided by depth
information. When the depth map brings distance ambiguity,
our BiANet is still robust in most cases depending on other
cues, such as centrality, shape in the depth map and rich
cues from the RGB information, etc.. However, the first two
columns in Figure 8 are extreme examples. Specifically, we
can see that the target objects are confusing in both the RGB
image and depth map.

The other situation that may cause failure is when BiANet
encounters coarse depth maps in complex scenarios ( see the
last two columns). In the third column, the depth map provides
inaccurate spatial information, which affects the detection of
details. In the last column, the inaccurate depth map and the
confusing RGB information make BiANet fail to locate the
target object.

V. CONCLUSION

In this paper, we propose a fast yet effective bilateral
attention network (BiANet) for the RGB-D saliency object
detection (SOD) task. To better utilize the foreground and
background information, we propose a bilateral attention mod-
ule (BAM) to comprise the dual complementary of foreground-
first attention and background-first attention mechanisms. To
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Fig. 8. Failure cases of BiANet in extreme environments. In the first two
columns, as the objects closer to the observer are not the targets, the depth
maps provide misleading information. In the last two columns, the BiANet
fails lead by the confusing RGB information and coarse depth maps.

fully exploit the multi-scale techniques, we extend our BAM
module to its multi-scale version (MBAM), capturing better
global information. Extensive experiments on six benchmark
datasets demonstrated that our BiANet, benefited by our
BAM and MBAM modules, outperforms previous state-of-
the-art methods on RGB-D SOD in terms of quantitative and
qualitative performance. The proposed BiANet runs at real-
time speed on a single GPU, making it a potential solution
for various real-world applications.
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