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Abstract—In many advanced multimedia systems, multiview
content can offer more immersion compared to classical stere-
oscopy. The feeling of immersiveness is increased substantially by
offering motion-parallax, as well as stereopsis. This drives both
the so-called free-navigation and super-multiview technologies.
However, it is currently still challenging to acquire, store,
process and transmit this type of content. This paper presents
a novel multiview-interpolation framework for wide-baseline
camera arrays. The proposed method comprises several novel
components, including point cloud-based filtering, improved de-
ghosting, multi-reference color blending, and depth-aware MRF-
based disocclusion inpainting. The method offers robustness
against depth errors caused by quantization and smoothing
across object boundaries. Furthermore, the available input color
and depth are maximally exploited while preventing propagation
of unreliable information to virtual viewpoints. The experimental
results show that the proposed method outperforms the state-
of-the-art View Synthesis Reference Software (VSRS 4.1) both
in objective terms as well as subjectively, based on a visual
assessment on a high-end light-field 3D display.

Index Terms—view synthesis, multiview 3D, disocclusion in-
painting, depth filtering

I. INTRODUCTION

MANY modern multimedia systems and applications
demand high-quality multiview video content. This

type of content is found in numerous domains such as 3D
media creation, management and distribution, digital signage,
augmented and mixed reality, gaming, medical visualization,
to name a few. The multiview video format opens the door
for a lot of interesting future applications, but it remains a
challenge to acquire, store, transmit and process this type of
data in an efficient manner.

Views synthesis methods play a major role in this context as
they allow for the generation of virtual viewpoints based on
only a limited set of input feeds. View synthesis is applied
in the creation of super-multiview content starting from a
small number of original cameras needed in order to feed
autostereoscopic displays [1]–[3]. View synthesis has also the
potential to adjust the baseline of stereoscopic video to serve
a diverse set of display devices ranging from mobile devices
to large cinema screens [4]. Furthermore, view synthesis
has already been successfully used in order to create better
prediction signals in 3D video coding systems and thereby
improve their compression performance [5]–[7]. Recognizing
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Fig. 1. The considered camera arrays do not have to be linear or ideal arc-
shaped. We performed experiments on both ideal and non-ideal arc and linear
camera arrangements at various inter-camera distances.

this potential, the MPEG-i community closely monitors any
advances in the field of immersive video. The MPEG-FTV
ad-hoc group, the predecessor of the MPEG-I working group,
recently issued a call for evidence on super-multiview and
free-navigation technologies [8]. The call targets the design of
(i) better compression methods for super-multiview content
in dense but not necessarily linear camera setups, and (ii)
new view synthesis techniques that can handle large and
non-linear camera arrangements. The group also maintains a
Depth Estimation Reference Software (DERS) [9] and a View
Synthesis Reference Software (VSRS) [10] representing the
state-of-the-art in the field.

When depth information is available, arbitrary virtual view-
points can be generated using depth image-based rendering
(DIBR) techniques. Using the depth map and the camera cali-
bration matrices, pixels from known reference cameras can be
projected onto the imaging plane of a desired virtual camera.
However, rendering a virtual viewpoint usually uncovers a
part of the scene that was occluded for some or all of the
reference cameras. The rendered image will therefore contain
holes that need to be concealed in order to provide a pleasant
user experience. In image inpainting, many state-of-the-art
methods exist that are designed to remove unwanted parts of an
image by seamlessly copying existing image structures in their
place [11]–[14]. However, directly applying these methods to
conceal disoccluded areas usually does not yield acceptable
results. Various extensions of these algorithms have been
investigated, e.g. the classical PatchMatch algorithm [14] has
been applied to view synthesis in [15] and the Markov random
field (MRF) -based inpainting method of [13] was adapted for
disocclusion filling in [16] and our previous work [17]. Other
works focus on graph-based reconstruction techniques [18],
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[19] and superpixel segmentation [20].
Many techniques exist in the literature to perform view

synthesis. Most methods, however, usually consider either
small baseline and/or purely linear camera arrays. In this
work, we consider relatively large baselines and arc-shaped
camera configurations. These characteristics give rise to some
additional challenges. Firstly, the disoccluded areas become
larger, which calls for more advanced inpainting methods. Sec-
ondly, color differences between corresponding scene points
are much more likely to occur and have to be processed
properly. In our earlier work [21], [22] we presented methods
to correct for significant color differences between cameras in
multiview setups. In this work, we assume that the cameras
at the input have the desired color characteristics and the aim
of the proposed method is to smoothly interpolate viewpoints.
It is also important to note that we still consider the camera’s
to be arranged in a relatively structured way, i.e. all looking
towards the scene of interest as shown in Fig. 1.

In this paper, we propose a novel multiview synthesis
framework. The proposed method builds further on our earlier
work of [17]. We consider the synthesis of virtual viewpoints
in a camera array that is not necessarily linear with relatively
large baselines between the original cameras. Our method
makes use of multiple reference views to reconstruct most
of the virtual view’s geometry and colors, while occlusions
are handled by our MRF-based inpainting algorithm. We also
highlight the importance of the depth maps and propose a
novel method to detect unreliable depth values. Thorough
experimental evaluations demonstrate objective performance
gains brought by the proposed method over state-of-the-art.
Additionally, we have also performed subjective evaluations on
a high-end light-field display (HoloVizio 722RC). The results
demonstrate that the proposed method brings statistically-
significant subjective quality improvements over state-of-the-
art.

In summary, the novel contributions in this paper include:
• Point cloud filtering for multiview sequences
• De-ghosting and depth map filtering
• Depth-aware MRF-based disocclusion inpainting
• Color corrected multi-reference blending
• Subjective assessment and experimental validation on a

high-end light-field display
The paper is structured as follows. Section II overviews

the different components and the latest advances in multiview
video synthesis. The proposed method is presented in detail in
section III. The objective and subjective experiments and the
comparison against the state of the art are reported in section
IV. Finally, section VI draws the conclusions of our work.

II. STATE-OF-THE-ART

The view synthesis problem originated under the name
image-based rendering (IBR). Given a series of 2D projections,
the goal is to create a 3D model. This is a very hard
problem as there are no assumptions made on the collection
of photos that are fed into such a system. Nevertheless, some
impressive methods, such as [23], were devised that can solve
this problem reasonably well provided that they are given 1)

Fig. 2. Pixels from a known camera have been warped on the view of a virtual
camera. As the camera movement was to the left, parts of the background that
were not visible to the original camera are now disoccluded.

sufficient computation power and time, and more importantly
2) a large amount of photos with a large overlap. The IBR
methods then jointly estimate the parameters of the camera
associated to each input photo and the 3D coordinates of key-
points in the 3D scene that can be tracked in multiple input
photos. This results in a sparse mesh that can be densified
further by several interpolation methods. View interpolation is
usually achieved by morphing some input views to the desired
viewpoint. This technique, however, does not work well in
large-baseline scenarios.

For several applications, the IBR pipeline is often too
complex as it requires a lot of processing power and time.
In this scenario it is often more desirable to do most of the
heavy-lifting off-line. This gave rise to the so-called depth-
image-based rendering (DIBR) techniques. Rather than relying
solely on 2D color images, DIBR methods also require that
each input viewpoint has a depth map associated to it and
that the camera parameters are known. This information is
then stored and transmitted as a multiview-plus-depth stream.
With this kind of format, the view synthesis problem can
be addressed in a more realistic manner. However, there
still remain difficulties that are not resolved. (I) Due to the
materials of objects in the 3D scene and their geometry or
due to imperfections in the recording of the multiview data, the
colors of different viewpoints can noticeably differ. (II) Scene
objects may occlude parts of the scene background that would
be visible in a desired virtual perspective. (III) Depth maps are
never perfect, so careful processing is required. (IV) Increasing
the baseline reduces severely the quality of the synthesized
views.

In the following sections, we will discuss existing works in
more detail. We categorize them in four categories related to
3D warping, disocclusion inpainting and depth map process-
ing, respectively. Note that this paper does not address the
color correction problem. We assume that the input sequences
are properly calibrated and aim to provide smooth transitions
between the input viewpoints. For more information on this
topic, we refer to our recent works in the field [21], [22].

A. 3D-warping

Most DIBR systems follow the same mathematical principle
of projective geometry based on the pinhole camera model.
They mostly differ in their implementation: some systems
perform forward warping with splatting [24], others perform
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bi-directional warping (also sometimes referred to as inverse
mapping) [10], and others employ a mesh-based approach
[25]. It is also important to note that when the reference
cameras are arranged in a purely linear fashion, the perceived
pixel-motion or disparity will also be linear. 3D-warping then
simplifies to simple pixel shifts. This is also referred to as
disparity-compensation. Forward warping refers to the pro-
jection from a known camera perspective to the target virtual
view. Each pixel of the known camera is projected to the image
matrix of the virtual camera. Because of discretization in the
image coordinates, the warped pixels do not hit the pixel grid
of the virtual camera exactly. The warped values are therefore
usually splatted to several nearby virtual pixels. However, even
after splatting, the warped pixel grid becomes visible in the
missing areas of the virtual view. This can easily be avoided by
performing bi-directional warping. Most systems first perform
forward warping to create the depth map of the virtual view
[10], [17]. This depth map is then processed using classical
morphological operators and average or median filters are used
in order to remove small cracks and outliers. In a backward
warp, the cleaned depth map is then used to lookup the correct
colors from the known camera using bilinear interpolation.

Other DIBR methods first triangulate the pixel grid of
the known camera and warp triangles instead of pixels [25],
[26]. In the method of Kopf et al. [27], gradients rather than
pixels are warped. The actual image is then reconstructed by
integrating the Poisson equation [28], regularized with a weak
additive bias to compensate for the lack of proper boundary
values. Poisson integration also occurs in other works in order
to compensate for color differences [29].

Generally, either bi-directional warping or triangle-based
warping both yield good objective and subjective results for
linear camera arrangements and small baselines between the
cameras. The benefit of the bi-directional warping approach
is that multiple classical or more advanced image processing
algorithms can be tested in order to maximize the quality of
the warp. The benefit of a triangle-based approach is that it
can rely on well-known methods that are already implemented
in graphics hardware and therefore have a lower runtime. It is
also possible to obtain computational speedups by performing
region-aware 3D-warping that avoids redundant operations
[30].

B. Disocclusion handling

Virtual viewpoints generally uncover parts of the scene that
were occluded in the reference camera views. This is referred
to as disocclusion and results in empty areas surrounding ob-
jects in the synthesized image (see Fig. 2). There are generally
two ways to fill in disoccluded pixels. Some researchers make
sure the virtual depth map contains no holes [31]–[33]. This
means that for every virtual pixel, a color can be found in
one of the known cameras. Others have developed specialized
inpainting algorithms [15], [34], [35], usually inspired by those
in single image/video inpainting [36], but taking into account
depth information.

1) Avoiding holes: In [31], a regular grid is imposed on
the depth map. The warping procedure is then implemented

as a deformation of this grid and is constrained in such a
way that it does not create any holes. This means that in
DIBR systems employing bi-directional warping, a color can
be found for every pixel in the virtual image. Alternatively,
one can prevent holes in the virtual images by estimating
the full depth map of the desired virtual view and then
use this depth map as a guide to sample colors from the
reference views. In [32] this is implemented by so called
plane-sweeping. Every pixel in the virtual view is assigned
a tentative depth value. Based on this value, the pixel can be
warped on multiple reference images and a cost is computed
based on how much the references agree or disagree about the
color for a particular pixel. Next, the tentative depth value
is adjusted and a new cost is computed. In the end, each
pixel in the virtual view is assigned the depth and color on
which most of the references agree. This method is inherently
massively parallel and therefore very suited for real-time GPU
implementation. The plane sweeping method has been shown
to deliver good results for free navigation in soccer video
[33]. However, when the scene contains complicated textures
or the displacement of the virtual camera is either too large
or non-linear, methods like [31], [32] are expected to create
large blurry areas and ghost edges. In [27], plane-sweeping is
employed as a stereo-matcher and an extra global optimization
is performed in order to reduce noise and blur artefacts in
image regions with non-negligible gradient magnitudes. This
is achieved using graph cuts [37] and a gradient-sensitive
regularization function [27]. Alternatively, as suggested in [38]
one can try to analytically determine optimal camera locations
in order to have full visibility of the captured scene.

2) Inpainting: A more common approach for disocclusion
handling is to employ inpainting algorithms. Many inpainting
methods exist in order to seamlessly remove content in a
2D image or even 2D video. However, directly applying
these methods to erase disocclusion areas will not generate
satisfactory results given that most patch-based inpainting
methods follow a kind of ”onion peeling” approach where
iteratively, a region of the hole boundary is filled in by a patch
that resembles the overlap with the already known area [39].
The filling order is driven by the presence of structures in the
image. Disocclusion regions, however, have a clear physical
origin and it is known that they should be filled in with
only patches that are sampled from the scene’s background.
Therefore, various view synthesis algorithms in the literature
adapt a classical 2D image inpainting algorithm in order to
make them depth aware and to avoid the bleeding artifacts
that would otherwise occur (see Fig. 4).

A first class of inpainting methods is based on interpolation
or diffusion. Smaller holes may be filled in using either
Gaussian filtering or median filtering, while for larger holes
an iterated diffusion process makes sure that strong contours
are extended in the disocclusion hole [40]. These methods
are simple and efficient for smaller disocclusion and content
with simple textures. For larger disocclusion holes, most
researchers tend to opt for a patch-based method, usually based
on Criminisi’s work [39]. In [39], the border of the hole is
referred to as the fill front ∂Ω (see Fig. 3). In every iteration,
the pixel p of the highest priority P (p) is selected and a patch
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Fig. 3. Inpainting schema: the region Ω needs to be filled by copying and
pasting patches from the known region I − Ω.

ψ(p) around it is examined. Since p ∈ ∂Ω, ψ(p) overlaps
with the known region of the image. Based on this overlap,
a patch ψ̂(p) is searched for such that the sum of squared
differences SSD(ψ(p), ψ̂(p)), computed only on the known
pixels of ψ(p), is minimized. The priority function P (p) is
constructed in such a way that patches that extend edges are
favored over others. Because of their use of patches and the
clever choice of P (p), the method of [39] is able to preserve
both the texture and structure of the image.

Daribo et al. [34] extended Criminisi’s work [39] to inpaint-
ing of disocclusions, refining the calculation of P (p) and the
search for ψ̂(p) by taking the depth information into account.
Similarly, Gautier et al. [41] used a tensor-based structure
propagation approach to compute the priority of structural tex-
tures based on their local geometry-based inpainting strategy
[42]. Also, [43] employs a tensor-based approach. In these
methods, depth-based foreground and background analysis can
be used to further guide the inpainting process [35].

The main disadvantage of [39] and its extensions is that
they are greedy methods that cannot backtrack if they make a
wrong decision at some point. These limitations were tackled
by posing the inpainting problem as a global optimization over
the entire image. The PatchMatch method [14] operates by
estimating a nearest neighbor field (NNF) from Ω to I − Ω
(following the notations from Fig. 3). The estimation of the
NNF and a weighted vote-based image reconstruction step
are then alternated in an Expectation Maximization framework
that operates on a Gaussian image pyramid. The PatchMatch
algorithm has been adapted for disocclusion inpainting by
using depth information in our previous works [15], [44].

Komodakis et al. [13] pose the inpainting problem as an
energy minimization problem on a 2D MRF. [13] proposes a
new variant of the classical belief propagation (BP) algorithm
and names it priority-BP. The priority function is computed
based on the state of the MRF rather than the image struc-
tures. However, the original 2D inpainting method of [13]
is relatively slow even with clever implementations that use
frequency domain computations and multi-scale processing.
Moreover, like any regular 2D inpainting method, it generates
artifacts by bleeding pixels from foreground objects into the
background when applied to fill disocclusions (Fig. 4).

In [16], an extension of Komodakis’ method is presented
where the computation of unary MRF-potentials at object
boundaries is disabled, which prevents color bleeding artefacts.

Fig. 4. Bleeding of foreground object when classic 2D image inpainting is
used to fill the disoccluded area after 3D warping [16].

Our MRF-based disocclusion inpainting approach in [17]
further improves on this technique by limiting the patch-
selection to background regions only and by adopting a new
priority function that promotes the information-flow from
background to foreground. This results in reduces complexity
and improved visual quality. In this work, we further build on
our approach [17] by adding the image quilting technique [45]
which significantly reduces blocking artefacts. More details are
given in section III-D.

C. Depth map processing

Most researchers agree that the quality of the depth maps
has an enormous impact on the view synthesis result. In [46], a
depth no-synthesis-error model (D-NOSE) is proposed which
analyzes the allowable errors that depth maps can have in order
to maintain high-quality synthesis. Preprocessing of depth
maps is therefore quite common. In [47], a quad-lateral filter
is proposed. This filter is an extension of the classical bilateral
filter, but it includes some additional information in the form
of a spatio-temporal component in the weighted sum. This at-
tempts to suppress common flickering depth pixels while also
enhancing the local coherency of surfaces. Emori et al. [48]
consider mixed-resolution scenarios where depth maps are of
lower resolution compared to the corresponding texture image.
In [48], various experiments using simple bicubic interpolation
or wavelet transforms are presented. Other researchers focus
on the actual estimation of depth maps. The MPEG depth
estimation reference software (DERS) [9] delivers state-of-
the-art depth maps based on image segmentation, epipolar
disparity search and graph-cut optimization [37]. However,
the software has a high runtime and various parameters to
tune. Stankiewicz et al. [49] propose a novel method for
unsupervised depth estimation based on maximum a posteriori
probability (MAP) estimation.

The state-of-the-art in view synthesis is given by the View
Synthesis Reference Software (VSRS) [10], maintained by
the MPEG-I (previously MPEG-FTV) working group. This
method combines bi-directional warping using quarter pixel
precision and simple diffusion-based inpainting. The software
required exactly two reference views in order to synthesize
a virtual viewpoint, i.e. the closest left and right views. In
contrast to this approach, the proposed method makes use of
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Fig. 5. Top view of Poznan Blocks, showing the camera locations.

Fig. 6. Both images in this figure are zoomed-in on a critical part of
the Butterfly sequence. The zooms are computed using nearest neighbor
interpolation. This shows that the legs of the butterfly are only 1 pixel wide
in the depth map. In the color image however, the edge is slightly blurred
into the background which would result into annoying ghosting artefacts when
performing 3D-warping of this view to a virtual viewpoint.

multiple references, performs removal of impossible surfaces
and improved depth map filtering, and employs MRF-based
disocclusion inpainting.

III. PROPOSED METHOD

In this section, we will discuss the proposed multiview
synthesis framework in more detail. We consider a scenario
where multiple reference cameras are available and focus on
the case where they are positioned with relatively large inter-
camera distances (wide baseline). A top view of a camera array
for Poznan Blocks is shown in Figure 5. We denote the set of
known reference views as a set

Cref = {(T1, D1), (T2, D2), · · · (TN , DN )} (1)

This set consists of N cameras denoted as a tuple Ri =
(Ti, Di) of a texture Ti and depth map Di. Given a target
virtual view, we then choose a set of reference cameras
R = Rl ∪ Rr with R,Rl, Rr ⊆ Cref where Rl (Rr) is a
subset of up to Nl (Nr) reference cameras that are positioned
to the directly left (right) of the virtual camera position. We
also add the constraint that abs(|Rl| − |Rr|) ≤ 1, with | · |
denoting the cardinality of a set and abs indicating the absolute
value. This constraint ensures that virtual camera positions at
the edges of the reference camera array are not synthesized
from cameras that are too far away and thereby maintain more
the characteristics of an interpolation problem rather than an
extrapolation. The notions of left and right imply that there
needs to be an ordering relation between different cameras.

(a) Visible ghosting artefacts. (b) Proposed warping method.

Fig. 7. Unreliable color pixels were identified and processed more carefully,
which greatly reduces ghosting artefacts while preserving fine structures such
as the legs of the butterfly.

We allow the camera configuration to be non-linear, but we
still assume that it follows a 1-dimensional path, i.e. we do
not consider cameras arranged in a 2-D grid.

The high level steps of the proposed multiview synthesis
method can be summarized as follows:
• Select the appropriate reference cameras R ⊆ Cref
• Remove unreliable pixels from all Di ∈ R
• Forward warp and clean all Di ∈ R reference depth maps

to the desired view
• Backward warp the 2 closest references and perform

depth-aware color blending
• Backward warp the |R|−2 remaining references in order

to avoid large disocclusion areas
• Perform MRF-based disocclusion inpainting for the re-

maining hole regions

A. Warping from known cameras

In order to warp a known view to the desired virtual view,
we employ a bi-directional warping using projective geometry
and the pinhole camera model. We experimented with different
strategies in terms of the number of references used and the
order in which different stages are performed.

1) Number of references: In our experiments, we found that
using more cameras greatly helps to avoid large disoccluded
areas. However, regions in the scene that are seen by almost
all references are very difficult to blend seamlessly as further
references are more likely to have subtle color changes and
errors in both the estimation and quantization of depth pixels.
For this reason we settled for a value of |R| = 4 where we
use the 2 closest references to reconstruct the majority of the
image structure and colors. The remaining cameras are then
only used for image regions where they are contributing new
information or where the information they are providing is
closer to the camera than the already existing values.

2) Multi-source blending: Since our approach is heavily
based on bi-directional warping, it is crucial that in the back-
wards warps, color from different sources are only blended
together if they correspond to the same scene-point. On the
one hand it seems logical to first create one single depth
map for the virtual view - cfr. plane-sweeping [32], [33]
- and then process it to be as clean as possible, e.g. by
enforcing piece-wise smoothness [37]. However, this depth
map then needs to be used to sample the appropriate color
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information from the reference cameras. If a virtual pixel
is reprojected onto the different references, we still need to
determine whether all references are seeing the same scene-
pixel or if some of them are seeing a background color while
the others are seeing foreground. A simple way to do this, is
to check whether the depth value of the reprojected virtual
pixel is similar to the depth value of the reference pixel
of which we are trying to sample the color. If this is not
the case, there is an occlusion. Even though the reference
depth maps are not fully reliable, this approach works because
the forward and backward projection are each others inverse.
However, when we generate one single depth map and use
this to re-project to multiple references, errors are aggregated
and negatively impact the synthesis quality. For this reason,
we choose to generate multiple virtual depth maps Dvi by
separately warping every Di ∈ R.

Due to spatial quantization in digital images, the color
information of pixels near an object edge is usually a mix
of the object’s color and the background behind it (Fig. 6).
However, a depth map usually produces a sharp discontinuity
and naively warping all pixels would cause ghosting artefacts
(Fig. 7a). These artefacts can be avoided by performing edge
detection on the depth maps of the reference cameras and
slightly dilating those to produce a reliability mask Mi for
every Ti ∈ Cref . Pixels that fall exactly on the edge are
unmasked in order to preserve fine structures such as the legs
of the butterfly in the Butterfly sequence, and the flower stems
and the bunny’s whiskers in the Bunny Flowers sequence. If in
the backwards warping step a masked pixel would be selected,
we discard this color contribution if at least one other reference
can provide a non-masked color. The result of this, is shown
in Fig. 7b.

For every pixel p in the virtual view Tv , the color is
computed by considering each warped Dvi ∈ R going from
the closest to the furthest reference camera position. Let pi be
the image of p in the i’th reference camera. An initial color is
computed based on the two closest references, which are the
most reliable as:

Tv(p) =
ω1T1(p1) + ω2T2(p2)

ω1 + ω2
if M1(p1) ∧M2(p2) (2)

where Mi denotes the reliability masks and ωi are weights
associated to each reference camera. The weights to perform
the color blending are computed as:

ωi = e
−dci

2·dcmax + λe
−dqi

2·dqmax (3)

In this equation, dci is the Euclidean distance between the
camera centers of the virtual view and a reference view
(Ti, Di) ∈ R, and dcmax = max dci. Additionally, dqi
is a distance measure between the camera orientations. Let,
qvirtual and qi be the normalized quaternion representation
of the orientation of the virtual and i’th reference camera,
respectively. We then define the distance between these two
orientations based on the inner product < ·, · > of these
quaternions [50], λ is then a parameter to control the balance
between these position and rotation terms.

dqi = 1− < qvirtual, qi > (4)

(a) Only weighted blending. (b) Weighted blending and histogram
matching.

Fig. 8. The result of the proposed color-blending method. Color correction
after establishing the desired color distribution is necessary to avoid ghost-like
contours in regions that were only visible for 1 reference camera. This figure
is best viewed in color and at high resolution.

The proposed multi-source blending algorithm consists of two
passes. In a first pass an initial image is rendered based on
pixels that can be reliably sampled from the two closest views.
The appropriate color in the virtual view is computed based
on the blending formula presented in Eq. 2. After this first
pass, the reference images Ti are color-corrected to match
the color distribution of the current Tv . In a second pass,
the remaining pixels from the closest references (now color-
corrected) are warped and remaining occlusion areas are filled
using the further references where possible.

The two closest reference views are blended by default.
Other views are only used for pixels that are still unknown
or pixels that are significantly closer to the virtual camera
center, i.e. have a relative z-value decrease of at least 5%.
In this work, for efficiency considerations, we apply simple
histogram matching [51] to perform color correction. Figure
8 depicts a result of the proposed color blending method.

B. Removal of impossible surfaces

Both in measured and estimated depth maps, some depth
pixels contain values that do not correspond to the 3D scene.
Sometimes, the values are just a little off due to limited preci-
sion, but it can also happen that they are simply plain wrong,
i.e. a confusion between foreground and background values.
Figure 9a depicts a point cloud rendered by re-projecting all
pixels in camera 4 of the Poznan Blocks sequence using the
input depth map. Visualizing the data in this manner reveals
some artefacts that are less apparent in the 2D projection.
For example, the effect of quantization in the coordinates of
the vertices becomes visible. However, the most disturbing
errors are the flying pixels that connect foreground objects
to the background. We suspect that these originate from the
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post-processing of the depth map in order to make it visu-
ally pleasant and seemingly coherent. These pixels are very
disturbing when performing view synthesis. In this paper, we
propose a method to detect these pixels. We then avoid them
when performing 3D warping. This is achieved by following
a procedure for the denoising of LiDAR-acquired depth maps
as proposed in [52].

To detect the so-called flying pixels, we analyze the local
geometry of the point cloud and identify vertices that are
physically not plausible. Since the point cloud is generated
from a 3D→ 2D projective measurement, it is highly unlikely
that it could contain surfaces that are aligned with the view
frustum of the projective camera. For every vertex ~vi in
the point cloud we estimate its local normal vector in the
coordinate frame of the camera using the method of [53]. This
normal vector describes the surface around this vertex. We
then compute the inner product between this normal vector
~nvi

and the vector ~vi − ~f which is the vector that points
from the camera’s optical center to the vertex. When this
inner product is lower than a certain threshold τ , the vertex
is considered unreliable and discarded from the point cloud.
This is implemented in our system by the computation of a
depth map mask

Dm =

{
0 if 〈~nvi , ~vi − ~f〉 < τ

1 otherwise
(5)

Figure 9b depicts the same point cloud removing the pixels
marked by our filter. Since the rendering of this point cloud
is a form of view synthesis, it is easy to see that this pre-
processing filter will greatly improve the performance of other
view synthesis techniques as well.

C. Filtering after forward warping

In a classical DIBR framework, the depth maps of known
camera viewpoints are first projected to the target camera
(forward warping). These warped depth maps then undergo
some processing and the warped-and-processed depth maps
are then used in a backward warp to sample colors from
the known cameras and essentially synthesize the desired
virtual view. Figure 10a shows a forward warp of a depth
map. Red pixel values indicate that the depth value at this
location is unknown, either because it was occluded in the
view where it was warped from or because we marked it
as unreliable in the previous step. In this stage, the effect of
quantization is hindering the synthesis result. The procedure
can be summarized as follows: for every pixel p in the current
warped depth map D, the following steps are performed.

1) Let Wp = {pi| ||p − pi||1 ≤ 1} be the window that
contains the pixel p and its 8-connected neighbors.

2) Nk = {pi ∈ Wp|D(pi) is known} and Nu = {pi ∈
Wp|D(pi) is unknown}

3) If p is known and |Nu| > 6, mark p as unknown. Isolated
pixels are likely to be wrong.

4) If p is known, but 6 of its neighbors have a value that is
closer to the camera, replace p by the median of these
neighbors. This pixel is likely to be a background value
that is visible through a foreground object.

(a) Raw point cloud with all vertices.

(b) The proposed filter removes unlikely points.

Fig. 9. The proposed filtering approach based on point normals and their
orientation with respect to the view vector that connects the camera focal
point and the vertex position. The point cloud is rendered in MeshLab [24]
using forward warping with splatting.

5) If p is unknown but |Nk| > 4, mark p as known and
assign it the median value of its known neighbors. This
pixel is a thin hole due to quantization.

These steps are repeated until the depth map stabilizes. The
resulting depth map after processing with the proposed method
is depicted in Fig. 10b.

D. MRF-based disocclusion inpainting

First, a regular grid of overlapping w×w patches is defined
over the entire image. Patches that contain disoccluded pixels
are considered to be nodes pi ∈ V in an MRF where V denotes
the set of all nodes. All other patches that contain no missing
pixels form the set of possible labels L that can be used to
fill in any missing pixels. MRF nodes are connected in a 4-
neighborhood and the set of edges is denoted as E . For every
node, we want to find a plausible patch xi ∈ L that contains
no missing pixels and can be copied such that all disoccluded
pixels are filled in. We call this a labeling for patch pi and we
denote ~x as a labeling for the entire MRF. Finally, we would
like the filling of all disoccluded pixels in the image to be
globally optimal rather than greedy. We denote the MRF total
energy as:

E(~x) =
∑
pi∈V

Vi(xi) +
∑

(i,j)∈E

Vij(xi, xj) (6)

where Vi(xi) denotes the label cost for a node pi and is
computed as the sum of squared differences (SSD) between
any known pixels in the existing patch at node pi and the
corresponding pixel in the patch xi that is assigned to fill the
missing pixels. Similarly, Vij(xi, xj) denotes the SSD within
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(a) Forward warping without filtering. Red areas denote
unknown pixels. Note that there are thin regions with

red values as well as thin regions with background
pixels that are visible through what should be a solid

foreground object, due to the discretization of the source
pixels’ coordinates.

(b) The proposed depth map filter successfully fills
depth pixels that should be known or corrects depth

pixels that are likely to be wrong.

Fig. 10. The effect of our depth map filtering after forward warping.

the overlap when patches xi and xj are assigned to nodes pi
and pj , respectively.

The solution to the inpainting problem, ~x∗, is then defined
to be the labeling that minimizes this energy:

~x∗ = argmin
~x

E(~x) (7)

Patches that consist of only unknown pixels will have a 0 label
cost for any label, therefore the label for these patches will be
inferred from the information that is propagated in the overlap
costs.

1) Energy minimization: Exact minimization of this energy
function would require an exhaustive enumeration of all possi-
ble combinations and is therefore computationally intractable.
For N MRF-nodes and |L| possible labels, the complexity
would be O(|L|N ). However, a good approximate minimum
can be computed in O(|L|2) time using a variant of the
belief propagation algorithm. We employ the priority-BP (p-
BP) algorithm proposed by [13].

In a belief propagation (BP) algorithm, the global energy is
minimized by having all MRF-nodes send message vectors to
their direct neighbors. A message from node pi to node pj is
computed as:

mij(xj) = min
xi∈Li

{Vij(xi, xj) + Vi(xi)∑
n∈Ni\{j}

mni(xi)} (8)

For every label xj that MRF-node pj can take, its neighbor pi
first consults all its own labels xi ∈ Li. Node pi checks what
the cost of choosing this label is and how well it would fit if

j chooses xj . It then also considers the messages that it has
received about this label from all its neighbors n ∈ Ni, except
pj , and computes the minimal message that is achievable for
xj based on the available information.

From these messages, all MRF-nodes can compute a belief
value bi(xi) for all of their labels:

bi(xi) = −Vi(xi)−
∑
n∈Ni

mni(xi) (9)

The order and frequency of message updates depend on the
particular variant of the algorithm. In p-BP, nodes are assigned
priorities based on the strength of their current belief values.
Every iteration, nodes are traversed in order of decreasing
priority and messages vectors are sent to nodes that were
not yet visited during that iteration. This is referred to as
a forward pass. After the forward pass, nodes are visited in
reverse order and messages are sent again. A single iteration of
the p-BP algorithm consists of a forward pass and a backward
pass. After only one iteration, some labels may have become
very unlikely for some nodes. This is represented by very
low belief values. In a pruning step, these labels are removed
from the label-sets of these nodes which significantly speeds
up subsequent iterations.

The p-BP algorithm computes patch priorities P (pi) based
on their belief values and additional information from the
depth map:

P (pi) = Z-bonus(pi) +
1

|CS(pi)|
(10)

CS(pi) = {xi ∈ Li|bi(xi)−max
x

bi(x) ≥ bconf} (11)

In Eq. 10, |CS(pi)| denotes the size of the confusion set
(Eq. 11) for node pi. This is the set of labels for which the
belief values relative to the maximum value, exceed some
predefined threshold bconf . The Z-bonus is a value that is
computed based on the depth map, i.e. nodes that intersect the
edge of a foreground object are given a 0 value, while nodes
that intersect with the background are set to 1. Next, at each
message update, the sending node passes 80% of its confidence
to its neighbor. This priority function promotes both the
flow of important visual structures as well as background-to-
foreground propagation. The p-BP algorithm converges after
only a few iterations and at this point, every patch will select
the label with the highest belief value.

In order to avoid blocking artefacts in the composition of
the inpainting result, we employ the image quilting method
of [45]. For every pair of overlapping patches, a minimum-
energy seam is computed in order to determine which patch
contributes which pixel-value. Pixels on and around the seam
are slightly feathered in order to hide the seam itself.

2) Candidate patch selection: As mentioned in the previous
section, the asymptotic complexity of the p-BP algorithm is
O(|L|2). We assume here that every MRF-node pi ∈ V has
to select a label from the same set of candidates L. This is
the case in Komodakis’ original work for 2D image inpainting.
However, it is possible to further reduce the runtime by having
separate candidate label sets Li. In [54] for example, each
MRF-node is assigned a set of candidate labels based on
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(a) Flowers skipping 10 cameras. (b) Flowers skipping 11 cameras. (c) Flowers skipping 12 cameras.

(d) Butterfly skipping 10 cameras. (e) Butterfly skipping 11 cameras. (f) Butterfly skipping 12 cameras.

Fig. 11. Objective evaluation of the proposed method on the Flowers and Butterfly sequences.

texture features. We obtain a similar behavior by taking into
account the physical origin of the regions that need inpainting.
Since they originated from a disocclusion, it is reasonable to
assume that valid candidate patches should contain background
information and that the offset to sample these patches from
should be mainly horizontal. In our method, this candidate
patch selection is implemented by growing a rectangular
window around each MRF-node. More precisely, we first walk
across the local hole boundary ∂Ω in order to find the zfar
value that is the furthest from the virtual camera. We then
start with a small window of 150 × 15 and start selecting
fully-known patches for which the average depth is at least a
certain percentage of zfar. We adjust the size of the window
with increments of 10 and 2 pixels in the x and y dimensions,
respectively, until each MRF-node has at least 50 candidate
labels.

3) Implementation considerations: Based on the descrip-
tion in the original paper of [13] the implementation of the p-
BP algorithm is relatively straightforward, but there are some
points worth mentioning. First of all, disocclusion holes are
often disconnected in a full-HD video frame. Therefore it does
not make sense to run global optimization on the disconnected
MRF as this will consume a lot of memory. We first run
a connected components algorithm on the MRF graph and
separately optimize these components. Second, if the MRF
consists of a large number of nodes, repeatedly finding the
one with the highest priority can become a bottleneck so it is
worth implementing this part of the algorithm using a max-
heap with an update-key method, similar to what one would
use for Dijkstra’s shortest path algorithm. And finally, when

sending messages from a node to its neighbors, one needs to
make sure to normalize the message vector by subtracting the
minimum element of this vector in order to avoid numerical
instability problems and overflows.

Performing frequency domain SSD computations and a
multi-scale optimization as suggested in [13] is definitely
worthwhile for 2D image inpainting, but not crucial in the
context of disocclusion inpainting as the number of labels can
be sufficiently constrained with help from the depth map.

E. Post-processing

After disocclusion inpainting, the virtual view is fully
computed. However, DIBR-methods tend to render unnaturally
sharp edges at the border between foreground objects and the
background. As suggested in [25], we track these edges and
before writing out the final result, we apply a subtle low-
pass filter at these edges in order to avoid objects looking like
cardboard cutouts.

IV. EXPERIMENTAL RESULTS

We implemented the proposed multiview synthesis system
in C++ and calculations were performed in Lab color space.
Various virtual viewpoints were rendered for some of the
popular multiview datasets each with their own particular
difficulties, including BigBuckBunny Flowers, BigBuckBunny
Butterfly, Poznan Blocks, Poznan Fencing, Microsoft Break-
dancer. The camera arrangement in Flowers and Butterfly
forms a segment of an Arc. Poznan Blocks, Poznan Fencing,
and Microsoft Breakdancer are sequences where the capturing
cameras are more or less arranged in an Arc but they are
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sparse. For these sequences we interpolated a virtual camera
path such that the camera center position follows a smooth
cubic spline and the virtual camera orientation a spherical
linear interpolation. Poznan Fencing is actually arranged as
5 stereo pairs. For the interpolation of the virtual camera path
we dropped the right camera in each stereo pair, but this was
of course still used for the actual synthesis.

To analyze the performance of our synthesis, we compare
against the latest version of the MPEG VSRS software (4.1)
and conduct both objective and subjective quality analysis. We
also considered the view synthesis tools implemented in the
3D-extension of HEVC (HTM-Renderer) [55]. This software
has also been demonstrated to yield very good synthesis
results. We can however not use it in our use-case as it is
not developed to consider non-linear camera arrangements.

Our implementation of the proposed method takes roughly
20 seconds to render a frame while VSRS only takes 1 second
on the same desktop PC. The most time is spent on the globally
optimized disocclusion inpainting. Speed optimizations of the
current implementation are expected to reduce the execution
time to an acceptable operational range. This can be done by
code optimizations and parallelized GPU implementations of
belief propagation [56].

A. Objective evaluation

In order to quantitatively assess the performance of the
proposed method, we followed the same procedure as [17].
We present results for the Flowers and Butterfly sequences. In
these sequences, 79 camera views are available. We simulate
a wide-baseline scenario by sub-sampling this array of known
cameras by skipping 10, 11, and 12 views. The skipped views
are then interpolated using both the proposed method and
VSRS (4.1) [10]. Since we do have the real views that should
be at the skipped positions, we can compute objective quality
metrics.

Figure 11 depicts the PSNR computed on the camera views
that we chose to synthesize. The ”skip” number indicates
how many camera positions were skipped while selecting the
reference cameras. The horizontal axis depicts the camera
index in the array (6 → 84), and the vertical axis depicts
the PSNR value in (dB). The reference camera positions are
indicated by the dashed vertical lines. It is clear that the
proposed method yields a substantial gain in terms of objective
quality. The average gain over all views in a sequence ranges
from 0.93 dB to 1.47 dB with peak gains up to 5 dB in some
views. Table I gives the average and peak PSNR gains per
sequence.

We also compared the proposed method on some older
well-known datasets On Microsoft Ballet and Microsoft Break-
dancers. We performed the experiment where camera 4 was
selected as the desired virtual viewpoint. We then synthesize it
from different baselines by only considering two surrounding
reference cameras. We also report the scenario where all
reference cameras were available. For VSRS this does not
change the results, as VSRS does not support more than two
references; this experiment shows that the proposed method
successfully exploits the additional information. We also show

TABLE I
PSNR GAINS OF THE PROPOSED METHOD OVER VSRS.

Sequence average PSNR gain (dB) max gain (dB)

Flowers (skip 10) 1.14 2.97
Flowers (skip 11) 1.22 2.53
Flowers (skip 12) 1.47 3.99
Butterfly (skip 10) 0.93 5.01
Butterfly (skip 11) 1.28 4.20
Butterfly (skip 12) 1.22 4.77

TABLE II
OBJECTIVE EVALUATION ON OLDER DATASETS.

Sequence (references) PSNR proposed (dB) PSNR VSRS (dB)

Ballet (all) 33.05 31.55
Ballet (3 and 5) 32.24 31.55
Ballet (2 and 6) 29.73 27.26
Ballet (1 and 7) 28.49 24.39

Breakdancers (all) 32.9 31.43
Breakdancers (3 and 5) 32.24 31.43
Breakdancers (2 and 6) 31.47 28.92
Breakdancers (1 and 7) 29.53 25.69
Newspaper (2 and 6) 29.18 29.66

results on the well-known Newspaper sequence. On this partic-
ular sequence, VSRS performs slightly better. The reason for
this is that the depth map is of too low quality and the depth-
aware label selection in the MRF-based dissoclusion inpainting
is misguided. Table II reports the PSNR for various baselines
in these datasets.

B. Subjective evaluation

In addition to these objective comparisons, we also con-
ducted subjective test sessions. Visual examples of the pro-
posed method compared to VSRS [10] are shown in Figures
12 and 13.

Two of the authors were involved in the subjective eval-
uation of interpolated viewpoints in the context of a call
for evidence of the former MPEG-FTV group [8]. From this
experience, we learned that it is not recommended to conduct
these experiments by presenting the synthesized views on a
regular 2D screen and then sweeping between views. Small
rendering artefacts are heavily emphasized when viewed as a
temporal change while they are sometimes imperceptible on
an autostereoscopic display.

1) Test set-up: A high-end HoloVizio 722RC light-field
display from Holografika available at our facilities was used
for subjective experiments. The light-field conversion software
provided by Holografika is able to process uncompressed YUV
data, having no impact on the rendered data. The viewing
area is equipped with light-blocking curtains and dimmable
non-flickering lighting. The lighting conditions and test envi-
ronment strictly follow the BT.500-13 recommendations [57]
for subjective visual testing.

2) Methodology: Currently, there is not yet a standardized
method to subjectively assess this type of content. We follow
as much as possible the BT.500-13 recommendations [57] and
the procedures followed by Dricot et al. in their work on
SMV compression [58]. We adopt the single stimulus method
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(a) VSRS [10]. (b) Proposed method.

Fig. 12. This figure depicts a synthetic view in the Poznan Fencing2 sequence. As indicated by the overlayed rectangles, the proposed method is able to
avoid some artefacts that are common in VSRS renderings.

(a) VSRS [10]. (b) Proposed method.

Fig. 13. This figure depicts a synthetic view in the BigBuckBunny Flowers sequence. In this type of sequences, most artefacts are caused by blurry object
edges.

TABLE III
ANALYSIS OF SUBJECTIVE TEST RESULTS

Sequence DMOS p-value

Breakdancer 0.56 0.0091
Flowers (skip 10) 0.22 0.2574
Flowers (skip 11) 0.69 0.0010
Flowers (skip 12) 0.75 0.00028
Butterfly (skip 10) 1.58 2 · 10−13

Butterfly (skip 11) 2.25 6 · 10−21

Butterfly (skip 12) 2.02 5 · 10−16

Poznan Blocks -0.28 0.1054
Poznan Fencing 0.58 0.0049

The DMOS value in this table denotes
the difference between the Mean Opin-
ion Score of the proposed method and
the reference technique. A positive value
indicates a performance gain. The p-value
is computed on the obtained scores using
a two-tailed t-test. A p-value less than
0.05 indicates a statistically significant
difference.

instead of the double-stimulus method of [58] which could
not be applied to sequences that were not originally captured
as dense. Following the recommendation [57], we show only

one stimulus and ask the assessor to score it on the classical
five-point scale. For the Flowers and Butterfly sequences, we
include the unimpaired reference in the test for which we have
ground truth as a computer graphics sequence. We started the
experiment with 19 participants. All participants consistently
gave these unimpaired references a maximum score with some
more modest scores of 4 for the Flowers sequence. One
participant scores both of the unpaired references with a 3,
but gave a 4 to another impaired sequence so we excluded this
participant from the experiment considered as an outlier. The
test was organized in two sessions: both sessions contain the
same 20 sequences but in a different order. No two sequences
of the same content were shown in succession.

3) Analysis: The 18 remaining participants rated each of
the 20 sequences twice. We therefore have an array of 720
votes. For each sequence, we compute the average score and
the confidence interval (Fig. 14). We conclude that for most
sequences, the proposed method is preferred with statistical
significance. For the Flowers sequence with a skip of 10, the
results are comparable and for the Poznan Blocks sequence
there appears to be a slight preference for the VSRS method.

We screened the observers in order to identify potential out-
liers using the procedure described in the recommendation [57]
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Fig. 14. Subjective evaluation: average of the observer scores on a 5-point
scale with error bars.

and an additional check based on the first and third quantiles
as described in [58]. Except for the one observer which we
had already removed for failing to correctly score the reference
sequences, no other observers were identified as outliers. We
then performed two-tailed t-tests to check whether the scores
for corresponding sequences of the proposed method and the
method of [10] are different with statistical significance. The
result of the t-tests confirms what is also visible in the bar chart
in Figure 14: except for Flowers (skip 10) and Poznan Blocks,
we have to reject the null-hypothesis that the obtained scores
have the same mean at a significance level of p = 0.05 (see
Table III), indicating that for these sequences the measured
gains in subjective quality are significant.

C. Parameter configuration

The threshold τ in Eq. 5 is determined empirically by visu-
ally assessing the filtered point cloud. A patch size of 15×15
was used for disocclusion inpainting, and the parameters of the
priority belief propagation were configured according to Ko-
modakis’ original work [13], i.e. bprune = 2·bconf = −SSD0,
where SSD0 represents a mediocre SSD between two patches
(0.152 ·patch area ·3). The number of labels per node in the
dynamic label pruning step is set to remain between Lmin = 5
and Lmax = 30. With respect to the λ parameter in Eq.
3, we have analyzed the influence of the rotational term by
synthesizing viewpoints for which the ground truth texture
is known. In this sense, we have computed the differences
in PSNR for various values of λ relative to the case when
the rotational term is not accounted for (i.e. λ = 0). The
experiments on both computer graphics material (Butterfly,
Flowers) as well as when synthesizing known viewpoints
of the Poznan Blocks, Poznan Fencing, Microsoft Ballet,
and Microsoft Breakdancers sequences reveal limited PSNR
differences, of no more than 0.1 dB. Hence, we considered
λ = 0 throughout the experiments. However, the rotational
term may become important for applications where cameras
are arranged in a more arbitrary manner than considered in
this work.

V. LIMITATIONS AND FUTURE WORK

As illustrated in Fig. 1, this paper addresses view synthe-
sis in wide-baseline camera arrays. The proposed approach

assumes that there is some structure in the camera setup.
That is, when selecting the two closest cameras to synthesize
the desired virtual position, the orientation of these cameras
should not be completely different from the orientation of the
virtual camera. It is also important that the field-of-view of
the references used for interpolation have an overlap with the
virtual field-of-view; the presented method is not evaluated on
datasets where this assumption is violated. The selection of
good reference cameras becomes more challenging when the
virtual camera path is significantly deviating from a smooth
interpolating spline between the input cameras. This is an
interesting topic for further research.

VI. CONCLUSIONS

This paper presents a novel multiview synthesis framework
targeting view interpolation for wide-baseline camera arrays.
The framework uses as much as possible of the input color and
depth information by relying on more than only the two closest
references. Depth maps are carefully preprocessed in order
to avoid the propagation of unreliable information throughout
synthesized frames, and remaining disocclusions are inpainted
using an efficient depth-aware MRF-based inpainting method.
The proposed method offers robustness against various types
of errors that can be present in the considered camera arrange-
ments. The point cloud-based filter to identify unlikely pixels
at object boundaries successfully discards pixels that would
have caused ghosting artefacts. Weighted color blending in
combination with histogram matching ensures smooth transi-
tions between the color histograms of the reference cameras.
Both objective and subjective evaluations on a high-end light-
field display demonstrate a significant improvement over the
reference method in the literature. Objective performance
gains ranging from 0.93 dB to 1.47 dB were observed and
statistically significant gains in mean opinion score of 0.56 to
2.25 on a five-point scale.
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and V. K. Adhikarla, “Subjective evaluation of super multi-view com-
pressed contents on high-end light-field 3D displays,” Signal Process.
Image Commun., vol. 39, pp. 369–385, 2015.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. Y, MONTH YEAR 14

Beerend Ceulemans is a joint Ph.D candidate in the
Department of Electronics and Informatics (ETRO)
at the Vrije Universiteit Brussel (VUB) and the Lab-
oratories of Image, Signal processing and Acoustics
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