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A B S T R A C T

The production of curved displays has substantially increased in the past years. This new type of displays
can enhance the feeling of immersion by surrounding the viewers with content. In this paper, we propose
a content-aware and depth-aware video deformation method for projection of rectangular content on curved
displays. Novel deformation and grid-based mapping methods are proposed to prevent over-preservation of
foreground content for static and dynamic content and to enforce temporal coherence. The objective evaluation
of the results shows that our approach efficiently and consistently preserves both static and dynamic content.
A thorough subjective evaluation is also performed using a real-world curved screen as well as a virtual
reality setup, showcasing our method against existing methods. Experimental results indicate that our method
systematically outperforms the existing state-of-the-art, providing minimal content distortion and high temporal
coherence between consecutive frames.

1. Introduction

Immersion, in the context of virtual reality, defines how convinc-
ing a viewing experience is for the user. This term is also used to
generally describe a realistic viewing experience in the real world. A
lot of research has been carried out in the recent past in order to
substantially improve the immersive visual perception by developing
new types of displays and means to consume the content. Ultra-High-
Definition (UHD) displays were developed to improve the rendered
spatio-temporal resolution of the video content. 3D displays based on
the stereopsis of binocular vision have been devised to convey the
perception of depth to viewers. Light field displays have been also
explored as means of providing auto-stereoscopy and a genuine 3D
experience. Last but not least, curved displays have been proposed
to provide an immersive experience by surrounding the viewer with
visual content; these displays can provide a realistic feeling when they
cover a large part of a user’s visual field. Cinemas have already tried
introducing curved projection surfaces to improve the immersion when
displaying a movie. However, with a single rectangular input source,
the curvature of the projection surface in a cinema must be kept small
to prevent extreme distortion effects. Curved screen TVs and curved
smart-phones do not suffer from this limitation, and can be designed
with somewhat larger curvature angles.

Projecting conventional rectangular video on curved displays is a
significant challenge, in particular for large curvatures. Related work
includes image and video retargeting methods of which an overview
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will be given in the next section. As detailed next, existing state-of-
the-art methods have difficulties in simultaneously keeping geometric
consistency for foreground and background objects and also in pro-
viding a temporally coherent video, free of visual artifacts at object
boundaries. Properly addressing these problems and providing solu-
tions to them is the main focus of this work. In this context, a novel
grid-based mapping method for video retargeting onto a curved surface
is proposed offering minimal content distortion and high temporal
coherence between consecutive frames.

In summary, the main contributions of this paper are as follows:

• We propose a deformation scaling method which limits the over-
preservation of foreground content and the distortion of the back-
ground.

• We introduce a grid-based mapping method which tackles the is-
sue of flickering and waving artifacts between consecutive frames.

• We introduce an objective metric which helps in evaluating video
deformation results based on the differences with respect to the
input source, as well as to objectively evaluate the temporal
coherence.

• We perform a thorough subjective evaluation of our proposed
method against the state of the art, by employing a real-world
curved screen display as well as a virtual reality setting which
allows for simulating projection on curved displays of arbitrary
curvatures.
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The paper is structured as follows. In the next section, a state-of-the-
art overview of existing retargeting methods is provided. Our proposed
method is presented in detail in Section 3, while the experimental
results and the comparison against the state-of-the-art methods are
reported in Section 4. Finally, Section 5 draws the conclusions of our
work.

2. Related work

2.1. Image retargeting

The simplest method to map an input rectangular image to devices
with different shape surfaces/aspect ratios is to crop the input image
directly. However, this will always result in a loss of content. Uniform
scaling Ling et al. [1] can also be used in this context, but this will
visibly introduce distortion of important content. Numerous content-
aware retargeting methods have been developed in the recent years
to enable the preservation of important content. Most of the image
retargeting methods can be generally divided into two main categories:
pixel-level and mesh-level methods.

Pixel-level methods are mainly based on seam carving proposed
by Avidan et al. in [2]. These methods follow common steps to solve
the deformation problem, that is: (i) they define an energy function
to generate the importance/salient map, and (ii) they remove one-
pixel-wide column/row with the lowest energy and proceed recursively
until the deformed image reaches the target size. Battiato et al. [3]
define the energy function by the properties of Gradient Vector Flow,
incorporating thus gradient information in the deformation process.
Qi et al. [4] segment each seam in order to produce irregularly-
shaped output images. Shen et al. [5] point out that it is not easy
to determine the important and salient objects that must be exempted
from distortion. Thus, they use depth maps captured by depth cameras
to determine foreground and to impose the protection of foreground
content.

The problem of loss of content is still persistent in the seam-carving
family of methods, which process pixels independently without consid-
ering the structure of content across neighboring pixels. An alternative
solution for image retargeting is to overlay a mesh and to warp the
image at mesh level, which means processing the pixels contained
within rectangular or triangular shaped grids. While the seam-carving
based methods only work with planar input and planar output, some
of the mesh level methods can also produce a spherical or cylindrical
output.

For the planar input/planar output image retargeting problem,
Zhang et al. [7] propose a method which preserves the shape of impor-
tant objects by supplementing the grid points by extra control points
that operate both locally and globally. Chang et al. [8] emphasize the
line structure preservation by formulating the problem in the Hough
space. Concerning planar to spherical/cylindrical transformation prob-
lems, Carroll et al. [9] propose a method which projects a 3D scene
onto a flat, wide angle image with user-specified constraints. This
method preserves the highly subjective perception on the flat image
after transformation.

Mansfield et al. [10] and Lee et al. [11] use depth maps to de-
compose the input image into different layers prior to solving the
retargeting problem.

Raskar et al. [12] and Sajadi et al. [13] emphasize geometric
calibration and alignment terms which solve the projection problem
on curved screens for a multi-projector system. However, these last
two methods do not consider the distortion of content occurring in the
deformation process.

Lu et al. [6] proposed an efficient grid-based, depth-aware im-
age adaptation method for image projection on curved surfaces. This
method mainly preserves the shape and the size of foreground-content
grids at the cost of background-content grids in order to fit the top

and bottom boundaries of curved screens. However, when the curva-
ture of the curved screen is large, both shape and size preservation
of foreground-content grids in Lu et al. [6] easily lead to a visible
distortion of background content (which can also be interpreted as
over-preservation of foreground content), as illustrated in the example
of Fig. 1. Moreover, when employed on video content, deforming
individual frames with this method can easily result in temporal in-
coherence, characterized by flickering or waving artifacts at object
boundaries caused by the motion of camera and/or objects in the scene.

2.2. Video retargeting

The common practice to solve the video retargeting problem is to
extend image retargeting methods towards video by embedding the
motion information as part of the image saliency map and by enforcing
temporal coherence between consecutive frames. Based on Avidan
et al. [2], Rubinstein et al. [14] extend the 2-D seam to 3-D time-
space seam to enforce temporal coherence. Wang et al. [15] emphasize
temporal consistency of the camera and object motion by aligning
consecutive frames and detecting moving areas. Zhang et al. [16]
overcome the difficulty of computing spatial domain importance maps
and solve the video retargeting problem in the compressed domain.
However, the retargeting problems solved by this prior works [14–
16] are limited to planar-to-planar applications. Thus, such methods
cannot be applied directly to our planar to curved projection problem.
Unlike [14–16], Wei et al. [17] correct a fish-eye video from spherical
domain to planar domain. However, our starting domain is planar and
requires a completely different methodology.

All the above-cited video retargeting methods are guided by im-
portance/saliency maps which can be computed in many different
ways. However, there is no guarantee or evidence that any specific
importance/saliency map computation method will always provide
stable and visually pleasing results when applied on a wide variety
of video sequences. Because of this, instead of computing importance
maps, more stable results are obtained by relying on depth information
instead based on which content is roughly classified into foreground
and background; details are given next.

3. Proposed method

3.1. Problem description

The pipeline of our method is presented in Fig. 2. We follow the
same projection model as that in Lu et al. [6] by projecting a deformed
video from planar domain to cylindrical domain in order to fit the
curvature of the curved screen. The projection is realized from the
center of curvature of the screen (called viewpoint in the remainder of
the paper), as illustrated in Fig. 3(a). We denote pixels in the original
frame by 𝑃 (𝑥, 𝑦). Pixels in the deformed frame and the output frame on
the curved screen are denoted by 𝑃 (�̂�, �̂�) and 𝑃𝑠(𝑥𝑠, 𝑦𝑠), respectively.

Our proposed method is content-aware and depth-aware. The de-
formed result is a mapping that optimally deforms a given input frame
so that it can be projected onto the image plane. The top and bottom
boundaries of each deformed frame are symmetrical curves that are
guided by the curvature boundaries of the curved screen. Meanwhile,
left and right boundaries of each deformed frame should be kept
vertical. In order to project the video onto the curved screen with
high temporal coherence and minimal content distortion, we add four
constraints on the deformation process:

• The shape of content in each frame should be preserved as much
as possible.

• Both foreground and background content should be preserved in a
balanced way, instead of focusing only on the foreground content.

• The boundaries (left/right/top/bottom) of each deformed frame
should be constrained to fit the boundaries of the curved screen.
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Fig. 1. (b) is the failure case in Lu et al. [6]. (c) is the image deformation result of proposed method.

Fig. 2. The framework of our proposed method.

• Temporal coherence should be imposed between consecutive
frames when motion is detected.

Each frame is covered by a quad mesh. We design an energy
function that imposes these constraints on the coordinates of grid
vertices. Determining the appropriate deformation process that meets
these constraints is thus formulated and solved as a global optimization
problem of which the details are given next.

3.2. Local similarity preservation

Our shape preservation energy 𝐸𝑆 is defined to preserve the content
shape within each grid. Intuitively, angles should be locally preserved
after deformation, hinting towards a conformal mapping. We choose to
apply a similarity transformation, which is a special case of conformal
mapping. Zhang et al. [7] prove that the shape preservation energy
can be associated to a linear least square minimization when such a
similarity transformation is applied for the grid 𝑞, following:

𝐸𝑆 =
∑

𝑞

‖

‖

‖

(𝐴𝑞(𝐴𝑇
𝑞 𝐴𝑞)−1𝐴𝑇

𝑞 − 𝐼)�̂�𝑞
‖

‖

‖

2
, (1)
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Each frame is covered by a quad mesh 𝑀 = {𝐹 , 𝑉 }, where 𝐹 = {𝑞𝑚, 1 ⩽
𝑚 ⩽ 𝑁𝑞} is the set of rectangular grid elements which uniformly
segment the frame, and 𝑉 = {𝑣𝑘 = (𝑥𝑘, 𝑦𝑘), 1 ⩽ 𝑘 ⩽ 𝑁𝑣} is the set
of grid vertices. Each grid element 𝑞, is defined by its four vertices 𝑣𝑎,

𝑣𝑏, 𝑣𝑐 and 𝑣𝑑 . In this paper, we use 𝑣𝑎 for the top-left vertex, and 𝑣𝑏,
𝑣𝑐 , 𝑣𝑑 , respectively, denote the other three vertices in clockwise order.

3.3. Depth aware scaling

The depth constraint used in Lu et al. [6] emphasizes too much on
the preservation of the shape and size of foreground content. When
the curvature angle of the screen is large, the distortion of background
content nearby foreground content is easily noticed, especially in the
middle part of the frame. As shown in the example of Fig. 1(b), the
circle next to Spider-Man’s right leg is heavily distorted because of the
over-preservation of foreground content.

Furthermore, for video deformation, if the foreground objects have
motion or the camera moves, the distortion in each frame caused
by these movements and over-preservation of foreground content will
become easily noticeable when displaying the video sequence. This
causes flickering and waving artifacts to appear at object boundaries
which are very disturbing.

In order to tackle the over-preservation of foreground content, we
firstly introduce a deformation impact factor 𝑓𝜃(𝑥) which is determined
by the 𝑋-axis coordinate. This factor indicates how much a column
on the curved screen has been deformed in the vertical direction for
each given 𝑥 on the curved screen. The closer the 𝑥 is to 𝑤

2 (the center
of a frame), the more deformation should be put on both foreground
and background content, rather than only background content. Besides
𝑥, the deformation factor 𝑓𝜃(𝑥) is dependent on the curvature angle 𝜃
of the curved surface. When 𝜃 gets larger, less pixels are valid when
projected from the image plane to the curved surface. For a specific
curved display, 𝜃 is fixed. Thus, we define our deformation impact
factor as follows:

𝑓𝜃(𝑥) =
ℎ𝜃(𝑥)
ℎ

, (3)
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Fig. 3. (a) shows geometrical model between the viewpoint 𝑉 , the image plane (Plane 𝐴𝐵𝐶𝐷) and the curved output screen (Cylindrical surface 𝐴𝐵𝐶𝐷) Lu et al. [6]. (b) shows
deformation scale map with a curvature angle 𝜃 = 90◦.

where ℎ𝜃(𝑥) is the number of valid pixels whose 𝑋 = 𝑥 in the
deformed image and ℎ is the height of input image. Fig. 3(b) shows the
deformation scaling factor when 𝜃 = 90◦. From Fig. 3(b), the values of
ℎ𝜃(0) and ℎ𝜃(𝑤) are 1, and the minimal value is reached when 𝑥 = 𝑤

2 .
The term ℎ𝜃(𝑥) depends on the boundary functions we use (details in
Section 3.4) which follows ℎ𝜃(𝑥) = |𝑦𝐵(𝑥) − 𝑦𝑇 (𝑥)|, where 𝑦𝐵(𝑥) and
𝑦𝑇 (𝑥) are coordinates on 𝑌 -axis on the top and bottom boundaries
forming curves 𝐶𝑇 and 𝐶𝐵 respectively.

Moreover, in order to avoid a stretching effect near left/right bound-
aries, we propose to keep the ratio of grid width and height to be the
same before and after deformation.

Based on these ideas, our depth constraint is introduced:

𝐸𝐹 =
∑

𝑞
𝛾(𝑞)

[

(𝑑𝑥(�̂�𝑎, �̂�𝑏)−𝑑𝑥(𝑣𝑎, 𝑣𝑏))2

+ 𝑠 𝑓𝜃(𝑥𝑏)(𝑑𝑦(�̂�𝑐 , �̂�𝑏)−𝑑𝑦(𝑣𝑐 , 𝑣𝑏))2

+ (𝑑𝑥(�̂�𝑎, �̂�𝑑 ) − 𝑑𝑥(𝑣𝑎, 𝑣𝑑 ))2

+𝑠 𝑓𝜃(𝑥𝑑 )(𝑑𝑦(�̂�𝑐 , �̂�𝑑 ) − 𝑑𝑦(𝑣𝑐 , 𝑣𝑑 ))2
]

,

(4)

where 𝑠 is the aspect ratio of the grid (width divided by height). 𝑑𝑥(⋅, ⋅)
and 𝑑𝑦(⋅, ⋅) are distances in the 𝑋-axis and 𝑌 -axis, respectively. 𝛾(𝑞) is
a sigmoid-like function introduced in Lu et al. [6], which follows:

𝛾(𝑞) = 2

𝑒−
𝜅(𝑞)
40 + 1

− 1, (5)

where 𝜅(𝑞) is the mean of depth value of all the pixels in 𝑞.

3.4. Boundary constraints

In order to project the deformed video perfectly onto the curved
surface, we also need additional constraints which restrict the vertices
on the mesh boundaries to be mapped to the corresponding boundaries
of the curved screen. For the left and right boundaries, they should be
vertically preserved, leading to the energy term:

𝐸𝑉 =
∑

𝑣𝑖∈𝑉𝐿

�̂�2𝑖 +
∑

𝑣𝑖∈𝑉𝑅

(�̂�𝑖 −𝑤)2, (6)

where 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) is a boundary vertex and 𝑤 is the width of input
image. 𝑉𝐿 and 𝑉𝑅 are the corresponding vertex sets of left and right
boundaries, respectively.

For the top and bottom boundaries, the boundary preservation
energy is given by:

𝐸𝐻 =
∑

𝑣𝑖∈𝑉𝑇

(�̂�𝑖 − �̃�𝑖)2 + (�̂�𝑖 − �̃�𝑖)2 +
∑

𝑣𝑖∈𝑉𝐵

(�̂�𝑖 − �̃�𝑖)2 + (�̂�𝑖 − �̃�𝑖)2, (7)

where �̃�𝑖 = (�̃�𝑖, �̃�𝑖) is a reference point on curve 𝐶𝑇 or 𝐶𝐵 such that
�̃�𝑖 = 𝑥𝑖, i.e. we keep the same horizontal sampling as the original grid.
As stated before, 𝐶𝑇 and 𝐶𝐵 are functions (or curves) that describe the
top and bottom boundaries, respectively. The coordinates of pixels on
the top and bottom boundaries should follow:

⎧

⎪

⎨

⎪

⎩

𝐶𝑇 ∶ (𝑟 − 𝑑)2 + (�̂� − 𝑤
2
)2 − 𝑟2(1 −

2�̂�
ℎ
)2 = 0

𝐶𝐵 ∶ (𝑟 − 𝑑)2 + (�̂� − 𝑤
2
)2 − 𝑟2(1 +

2�̂�
ℎ
)2 = 0 .

(8)

We do not consider the straight-line preservation constraint in our
method, since that:

1. Lines detected by a line detector without semantic information
as pre-condition are not always the straight lines which need
to be preserved. For example, the line detector of [18] used in
Lu et al. [6] mainly detects lines based on the image gradient.
Within the yellow dash rectangular regions of Fig. 4(a), the
lines detected on the boundaries of the model’s sleeves and
the back of the man on the right side in Fig. 4(b) should not
necessarily be preserved. Moreover, detecting real lines with
semantic information is not our main research target.

2. The preservation of lines across grids for the curved screens
by simply keeping the skew angle the same before and after
deformation easily results in visible segments. In Lu et al. [6], we
find that for horizontal and vertical lines, the preservation works
well, while lines that have a skew angle different from 0◦ or
90◦ are segmented by different grids and these segments become
easily visible by observers after deformation. In Fig. 4(c), the top
boundary of the white board is affected by segmentation.

3. Time cost needs to be taken into consideration. Some complex
line preservation methods like Chang et al. [8] could preserve
lines well at the cost of additional processing time. For example,
the method proposed by Chang et al. [8] takes 2–40s per frame
for straight-line preservation, which is significantly higher than
our whole pipeline.

3.5. Temporal coherence

When the scene changes suddenly, the flickering is not easily no-
ticed [15]. Thus, our temporal coherence assumes that all the frames
of one sequence are from one scene.

If we impose temporal coherence on moving objects only, the flick-
ering effect will propagate to the static content nearby. Thus, we take
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Fig. 4. (a) is the input image (with 2 yellow dash rectangular highlight regions). (b) shows the line detection result of the line segment detector [18]. (c) shows the unexpected
wave effect of previous straight-line preservation Lu et al. [6].

both dynamic and static content into consideration. When an object
moves, it can appear or disappear from one frame to the next, or move
from one coordinate to another. Detecting and tracking individual
dynamic objects among frames then keeping them temporally stable
would be an ideal approach. But accurate object detection and tracking
involve multi-label segmentation and pose estimation methods, which
are challenging tasks requiring more advanced approaches [19–21].
However, because our method is grid-based and already preserves the
shape of content based on the depth map, we do not need accurate
segmentation of moving objects.

By taking both dynamic and static content into consideration, we
propose a grid-based mapping approach for our temporal coherence
constraint. Wang et al. [15] apply a feature-based method to evaluate
the camera motion between consecutive frames for the purpose of
alignment. But this feature-based method does not perform well in
our grid mapping. This is due to the fact that the features detected
by [22–24] mainly take color variation into consideration and they
are sensitive to texturing. This leads to failure when matching texture-
sparse content, like the sky, where very few feature points can be
detected. Moreover, in texture-dense regions like vegetation, too many
feature points are detected. That is, if we only base the correspondence
between grids on the number of matched feature points, it will lead to
mis-matched results.

Thus, we consider the luminance, contrast and structure of each
grid. 𝑆𝑆𝐼𝑀 [25] is a method for measuring the similarity between two
images and is widely used for quality assessment with ground truth.
In our work, we use this metric to evaluate the similarity between
two grids. We calculate the 𝑆𝑆𝐼𝑀 [25] value between corresponding
neighboring grids at the previous frame. For a quad mesh at time 𝑡, let
𝑀𝑡 = {𝐹𝑡, 𝑉𝑡}, where 𝐹𝑡 = {𝑞𝑡,𝑚, 1 ⩽ 𝑚 ⩽ 𝑁𝑞𝑡} is the set of rectangular
grids which cover the input image, and 𝑉𝑡 = {𝑣𝑡,𝑘 = (𝑥𝑡,𝑘, 𝑦𝑡,𝑘), 1 ⩽ 𝑘 ⩽
𝑁𝑣𝑡} is the set of vertices. The grid mapping rule follows:

𝑚𝑎𝑝(𝑡 + 1, 𝑗) = arg max
𝑚∈ (𝑞𝑡,𝑗 )

𝑆𝑆𝐼𝑀(𝑞𝑡+1,𝑗 , 𝑚), (9)

where 𝑆𝑆𝐼𝑀(𝑎, 𝑏) is the 𝑆𝑆𝐼𝑀 value between grids 𝑎 and 𝑏. The 8-
connected neighborhood grids of 𝑞𝑗 and itself are denoted  (𝑞𝑡,𝑗 ) (see
Fig. 5). The result, 𝑚𝑎𝑝(𝑡+1, 𝑗), is the grid index at time 𝑡 which matches
best with grid 𝑞𝑡+1,𝑗 . After getting the mapping result, the offset (𝑢
and 𝑣, see Fig. 6) between matched grids from planar domain can be
transformed to the cylindrical domain (�̂� and �̂�, see Fig. 6), �̂� and �̂� in
horizontal and vertical direction, respectively.

For temporal coherence, we define an energy 𝐸𝑡,𝑇 for each mesh at
time 𝑡 + 1, which follows:

𝐸𝑡,𝑇 =
∑

𝑞𝑡+1,𝑗∈𝐹𝑡+1

‖

‖

‖

𝑉 ′(𝑞𝑡+1,𝑗 , 𝑞𝑡,𝑚𝑎𝑝(𝑡+1,𝑗)) − 𝑉𝑡+1,𝑗
‖

‖

‖

2
, (10)

where 𝑞𝑡+1,𝑗 is the 𝑗th grid of mesh at time 𝑡+1. 𝑉𝑡,𝑗 is the vertices set of
𝑗th grid on mesh 𝐹𝑡. 𝑉 ′(𝑞𝑡+1,𝑗 , 𝑞𝑡,𝑚𝑎𝑝(𝑡+1,𝑗)) is a matrix that contains the

transformed vertices from grid 𝑞𝑡,𝑚𝑎𝑝(𝑡+1,𝑗) to 𝑞𝑡+1,𝑗 in cylindrical domain
(see Fig. 6):

𝑉 ′(𝑞𝑡+1,𝑗 , 𝑞𝑡,𝑚𝑎𝑝(𝑡+1,𝑗)) =
[

𝛷(�̂�, �̂�, �̂�𝑡,𝑗,𝑎)𝑇 , 𝛷(�̂�, �̂�, �̂�𝑡,𝑗,𝑏)𝑇 , 𝛷(�̂�, �̂�, �̂�𝑡,𝑗,𝑐 )𝑇 , 𝛷(�̂�, �̂�, �̂�𝑡,𝑗,𝑑 )𝑇
]𝑇

,

(11)

where �̂�𝑡,𝑗,(⋅) is the corresponding vertex of the 𝑗th grid at frame 𝑡,
and 𝑃2 = 𝛷(𝑢, 𝑣, 𝑃1) is a coordinate-transform function from 𝑃1 to 𝑃2
with cylindrical offset �̂� and �̂� (�̂� and �̂� can be computed from the grid
mapping results). 𝛷(�̂�, �̂�, 𝑃1) follows:

𝛷(�̂�, �̂�, 𝑃1(𝑥1, 𝑦1)) = [𝑟 cos 𝜃 tan(arctan(
𝑥1

𝑟 cos 𝜃
) − �̂�

𝑟
),

(𝑦1 + �̂�) cos 𝜃

cos(arctan ( 𝑥1
𝑟 cos 𝜃 ) −

�̂�
𝑟 )
]𝑇 , (12)

where 𝑟 and 𝜃 are curvature radius and curvature angle, respectively.
𝑉𝑡,𝑗 is a 8 × 1 coordinate matrix for 4 vertices of 𝑗th grid at time 𝑡 on
the deformed image.

𝑉𝑡,𝑗 =
[

�̂�𝑡,𝑗,𝑎, �̂�𝑡,𝑗,𝑎, �̂�𝑡,𝑗,𝑏, �̂�𝑡,𝑗,𝑏, �̂�𝑡,𝑗,𝑐 , �̂�𝑡,𝑗,𝑐 , �̂�𝑡,𝑗,𝑑 , �̂�𝑡,𝑗,𝑑
]𝑇 . (13)

3.6. Total energy

Our total deformation energy 𝐸 for each frame at time 𝑡, 𝐸𝑡 is
the linear combination of shape preservation energy 𝐸𝑆 , depth energy
𝐸𝐹 , boundary constraints 𝐸𝑉 and 𝐸𝐻 , and the temporal coherence
constraint 𝐸𝑡,𝑇 with the corresponding weighting factor 𝛽𝑓 , 𝛽𝑏 and 𝛽𝑡:

𝐸𝑡 = 𝐸𝑡,𝑆 + 𝛽𝑓𝐸𝑡,𝐹 + 𝛽𝑏(𝐸𝑡,𝐻 + 𝐸𝑡,𝑉 ) + 𝛽𝑡𝐸𝑡,𝑇 . (14)

We set the high value of 𝛽𝑏 = 106 to impose hard boundary con-
straint. For 𝛽𝑓 and 𝛽𝑡, our proposed method follows similar parameter
settings as in other multi-term deformation methods [6,8,9]. We find
that 𝛽𝑓 = 1 and 𝛽𝑡 = 500 work well during experiments, and that small
changes do not affect results significantly. We use these fixed settings
for the remaining of this paper. The final minimization problem is a
linear quadratic function and can be solved by a linear least-squares
minimization. We use Pardiso [26] to solve our linear system.

4. Experimental results

4.1. Implementation

We implemented our method on the Microsoft Visual C++ 2012
platform with a 3.2 GHz Quad-Core Intel-i7 CPU and 16 GB of RAM.
Each input video is processed frame by frame. We first normalize
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Fig. 5. For each grid at time 𝑡 + 1 (i.e. the red grid), blue grids at time 𝑡 would be searched.

Fig. 6. Horizontal and vertical offsets (𝑢 and 𝑣) between grid 𝑞𝑡+1,𝑚𝑎𝑝(𝑡+1,𝑗) and grid 𝑞𝑡,𝑗 in the planar domain can be geometrically transformed into cylindrical offsets �̂� (horizontal)
and �̂� (vertical). In Fig. 6, 𝑞𝑡+1,𝑚𝑎𝑝(𝑡+1,𝑗) translates 2 and 2 grids in the planar domain, horizontally and vertically. (𝑢 = 2𝑤𝑔 and 𝑣 = 2ℎ𝑔 . 𝑤𝑔 is the width of each planar grid. ℎ𝑔 is
the height of each planar grid.).

the depth map 𝜉(𝑖, 𝑗) to the range [0, 255] and use the following pre-
processing:

𝜉′(𝑖, 𝑗) = 255
2

(

1 + tanh
2𝜉(𝑖, 𝑗)
255

)

. (15)

After computing the globally optimal deformation, the output video
is rendered with a GPU-based standard texture mapping. The time cost
mainly lies in the grid mapping, the optimization of the deformation
and the GPU-based texture mapping. We uniformly cover the grid with
size 64 × 30 pixels on each frame. For our cam scene (1280 × 720),
these steps take around 0.75 s and 0.09 s, respectively, and the total
execution time is less than 0.91 s for each frame.

Concerning the processing time and the need for the depth map as
input, our method could be used during movie making process rather
than the movie playback. For computer graphics based movies, the
depth map is readily available during rendering. For real-world movies,
the depth map could be captured by the RGBD camera, or from a stereo
camera pair. As our method does not require a very accurate depth
map, depth estimation from video sequence [27] or single frames [28]
could also be applied.

4.2. Data

The real-world video Breakdancers (we refer to it as dancer) we
used was produced by Interactive Visual Media group at Microsoft

Research [29]. We render the other CG videos from 3D models in
Blender 2.79. Except for Butterfly, other CG cases are rendered as
stereoscopic videos which can be watched with 3D glasses. All the CG
blender projects are open projects on Blender Cloud (cam, cam1b and
dweets).

4.3. Deformation results

We compare our deformation results with those produced by Per-
spective mapping, Uniform mapping and Lu et al. [6] with curvature
angle 𝜃 = 90◦. Fig. 7 shows a llama moving from the left side to the
middle of the scene. When using perspective mapping (see Fig. 7(b)),
some content near the top and bottom boundaries is cropped. In these
two frames, some grass and the top of the background hill are missing.
The results of the other two mapping methods do not lead to a visible
loss of content, though there is visible distortion of the fence and the
llama in the result of Lu et al. [6] (see Fig. 7(d)). The distant fence
is straight at frame 30, while it is bent at frame 42. As for Uniform
mapping (see Fig. 7(c)), the face of the llama is stretched seriously at
frame 30. At frame 42, the back-legs of the animal are stretched, while
its head and front-legs are correct. For our proposed method, unlike
uniform mapping, we preserve the shape of foreground objects without
too much distortion (see our result at frame 42). Unlike Lu et al. [6]
where static background objects are more distorted in order to preserve
the shape and size of foreground objects (see the fence at frame 42 next
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Fig. 7. 2 input video frames of case cam1b (a) and the corresponding deformation results with 𝜃 = 90◦ by perspective mapping (b), uniform mapping (c), Lu et al. [6] (d) and
our proposed method (e). (frame 30 and frame 42) ©Blender Foundation.

to the llama’s neck), our method (see Fig. 8(e)) balances the importance
of the moving foreground objects and static background objects.

Fig. 8 is a video showing 5 persons, and each of them has their own
individual motion in the scene. When it comes to shape preservation,
people close to the left and right boundaries are stretched visibly by
means of uniform mapping (see Fig. 8(c)). Moreover, the face of people
close to the right side is distorted differently within the selected 2
frames. The face at frame 0 is wider than that at frame 21. When
using perspective mapping (see Fig. 8(b)), the right hand of the central
dancer at frame 0 and the feet at frame 21 are missing and can be
easily noticed. The left-side floor at frame 21 is distorted more heavily
(bent effect) than those at frame 0 which leads to flickering effects in

the result of Lu et al. [6] (see Fig. 8(d)). Clearly, while exhibiting little
distortion on the wall and floor, our proposed method (see Fig. 8(e))
still preserves the shape of dynamic objects and the static content with
temporal stability.

Unlike the first 2 cases, the method of Lu et al. [6] do not work well
for cam. Lu et al. aim to keep the shape of foreground objects (stones,
desert and the llama). The llama is close to the bottom boundary in this
scene. Thus, the head and body part are well preserved by Lu et al. [6],
while the legs near the bottom are badly distorted, and this is clearly
visible. Besides loss of perspective mapping, the stretching effect near the
left and right sides can be easily observed in uniform mapping (stones
on the left side).
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Fig. 8. 2 input video frames of dancer (a) and the corresponding deformation results with 𝜃 = 90◦ by perspective mapping (b), uniform mapping (c), Lu et al. [6] (d) and proposed
method (e). (frame 0 and frame 21).

4.4. Evaluation

Objective evaluation:
The object shape changes in a movie scene are not basic enough

to be described using complex mathematical formulas shown in [31–
33]. Moreover, it is not easy to evaluate the temporal coherence of
dynamical content without precise segmentation results. Inspired by Lu
et al. [6] which use the centroid of grids to evaluate shape preservation,
we introduce an objective metric aiding us to evaluate the deformed
video from two aspects: (i) shape distortion of the deformed result;
(ii) temporal coherence of the deformed result compared to the input
sequence.

We divide the grids at frame 𝑡 into dynamic grids set 𝐷𝐺(𝑡) and
static grids set 𝑆𝐺(𝑡) respectively by Algorithm 1. The Euclidean dis-
tance 𝑑(⋅)(𝑡) between the centroids of two consecutive frames (frame
𝑡 and 𝑡 + 1, where (⋅) can be either 𝑑 – dynamic, or 𝑠 – static) can
describe the temporal movements of 𝐷𝐺(𝑡) and 𝑆𝐺(𝑡), respectively.
Then we calculate the absolute difference 𝐷(⋅)(𝑡) between 𝑑𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑(⋅) (𝑡)
and 𝑑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(⋅) (𝑡) from 𝐷𝐺(𝑡) and 𝑆𝐺(𝑡).

The mean value of 𝐷(⋅)(𝑡) can evaluate the shape distortion tem-
porally and the variance value of 𝐷(⋅)(𝑡) can evaluate the temporal
coherence.

Results are given for 7 cases: butterfly (10s, 12𝑓𝑝𝑠), cam (12s,
12𝑓𝑝𝑠), cam1b (13s, 12𝑓𝑝𝑠), dweets (10s, 12𝑓𝑝𝑠) and dancer (5s, 12𝑓𝑝𝑠).
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Fig. 9. 2 input video frames of cam (a) and the corresponding deformation results with 𝜃 = 90◦ by perspective mapping (b), uniform mapping (c), Lu et al. [6] (d) and our
proposed method (e). ©Blender Foundation.

Moreover, cam, cam1b and dweets are stereoscopic videos with left and
right views (labeled as L and R in the tables). We calculate the mean
and variance values of 𝐷𝑑 (𝑡) and 𝐷𝑠(𝑡) with 𝜃 = 40◦ and 𝜃 = 90◦.
Because perspective mapping loses content, we compare only uniform
mapping and Lu et al. [6] with our proposed method.

In Tables 1 and 3, when 𝜃 = 40◦, the mean values of all methods
are competitive and our proposed method has only a slight advantage
compared the other two, except for cam left view and right view.
Indeed, when the value of deformation angle 𝜃 is not too large, the
deformed results by means of these three methods are very close
to the corresponding ground truth. Both dynamic content and static
content are preserved well respectively. This can also be concluded

from Tables 2 and 4. The centroids of each frame are as stable as they
are in the ground truth. Scene cam (L and R) is an exception for Lu
et al. [6] with 𝜃 = 40◦ (see Fig. 12(c) and the second last row of Fig. 9).
The shape of dynamic objects is distorted seriously (the legs of the
llama are shortened). Besides dynamic objects, the right side ground
is heavily compressed. Both dynamic content and static content are too
far off from ground truth and they are not stable enough.

When 𝜃 = 90◦, the mean values of 𝐷𝑑 (𝑡) by uniform mapping do
not perform as well as Lu et al. [6] and our proposed method. This is
because dynamic content moving from the left side to the right side
is more stretched when it is close to the sides. Mean values of 𝐷𝑑 (𝑡)
in cam are smaller with Lu et al. [6] than those of uniform mapping,
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Fig. 10. Input depth maps at time 𝑡 and 𝑡 + 1.

Fig. 11. Corresponding contour maps (a)(b) of Fig. 10 calculated by Canny edge detector [30], temporal gradient map (c) and dynamic grids (d), shown in white. ©Blender
Foundation.

Fig. 12. (a) shows the real-world curved screen with curvature angle 𝜃 = 40◦. (b) shows the virtual scene we build within which the curved screens with curvature angle 𝜃 = 90◦.
(c) shows the deformation result of scene cam frame 0 by Lu et al. [6] with 𝜃 = 40◦.
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Algorithm 1 Algorithm for static grids and dynamic grids.
Require: Meshed depth map 𝑑𝑒𝑝𝑡ℎ(𝑡) at time 𝑡 and meshed depth map

𝑑𝑒𝑝𝑡ℎ(𝑡 + 1) at time 𝑡 + 1;
Ensure: dynamic grids set 𝐷𝐺(𝑡) and static grids set 𝑆𝐺(𝑡);
1: Detect the contour map 𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑡) and 𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑡 + 1) from 𝑑𝑒𝑝𝑡ℎ(𝑡)

and 𝑑𝑒𝑝𝑡ℎ(𝑡 + 1) by Canny edge detector [30] (see Fig. 11.);
2: Compute the temporal gradient map 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑡) of 𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑡) and

𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑡 + 1) (see Fig. 11(c).);
3: for all 𝑔𝑟𝑖𝑑 ∈ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑡) do
4: if gradient of 𝑔𝑟𝑖𝑑 ≥ 0 then 𝑔𝑟𝑖𝑑 belongs to 𝐷𝐺(𝑡);
5: else 𝑔𝑟𝑖𝑑 belongs to 𝑆𝐺(𝑡);
6: end if
7: end for
8: return 𝑆𝐺(𝑡), 𝐷𝐺(𝑡);

Table 1
Objective evaluation: mean of 𝐷𝑑 (𝑡) for various scenes and configurations.

Scene 𝜃 Mean of 𝐷𝑑 (𝑡)

Uniform Lu et al. [6] Proposed method

butterfly 40◦ 0.566302 0.658396 0.262247
cam (L) 40◦ 0.547710 1.959574 0.337895
cam (R) 40◦ 0.714413 1.745877 0.414786
cam1b (L) 40◦ 0.551407 0.759210 0.352015
cam1b (R) 40◦ 0.618535 0.735290 0.414190
dweets (L) 40◦ 0.575184 0.531805 0.344856
dweets (R) 40◦ 0.514265 0.509262 0.307742
dancer 40◦ 0.791693 0.882472 0.523511
butterfly 90◦ 2.783716 1.573083 0.972567
cam (L) 90◦ 2.722349 2.537118 1.332737
cam (R) 90◦ 3.548114 2.581514 1.643616
cam1b (L) 90◦ 2.788562 1.553388 1.371216
cam1b (R) 90◦ 3.123621 1.708179 1.627980
dweets (L) 90◦ 2.879390 1.559232 1.300870
dweets (R) 90◦ 2.553689 1.419156 1.165210
dancer 90◦ 3.896591 2.330255 2.140830

Table 2
Objective evaluation: variance of 𝐷𝑑 (𝑡) for various scenes and configurations.

Case 𝜃 Variance

Uniform mapping Lu et al. [6] Proposed method

butterfly 40◦ 0.223306 0.385706 0.047679
cam (L) 40◦ 0.396945 13.119368 0.203644
cam (R) 40◦ 0.369766 6.887471 0.160362
cam1b (L) 40◦ 0.587323 0.795642 0.196472
cam1b (R) 40◦ 0.517805 0.729009 0.190646
dweets (L) 40◦ 0.220330 0.245499 0.086291
dweets (R) 40◦ 0.179446 0.222211 0.084249
dancer 40◦ 0.198892 0.487549 0.183241
butterfly 90◦ 5.711604 1.685794 0.773003
cam (L) 90◦ 9.906974 19.700668 3.638118
cam (R) 90◦ 9.152859 10.212986 2.856850
cam1b (L) 90◦ 14.875714 3.950359 3.280384
cam1b (R) 90◦ 13.380880 3.548495 3.054187
dweets (L) 90◦ 5.524043 2.111583 1.382643
dweets (R) 90◦ 4.432388 2.033815 1.477977
dancer 90◦ 4.984207 4.717884 3.842195

and this is due to 𝜃 = 90◦ being a relatively large curvature angle, and
the content being close to the sides. The centroid coordinate is mainly
influenced by the top and bottom boundaries rather than the shape of
the dynamic content. But in Table 2, the variance values in scene cam (L
and R) by Lu et al. [6] are much higher than those of uniform mapping,
which can explain the failure of Lu et al. [6] in scene cam (L and R).
Moreover, for dynamic content, our method performs the best when
compared with the ground truth and is temporally stable enough, with
the lowest mean and variance values simultaneously.

For static content, uniform mapping and Lu et al. [6] have com-
petitive results, but our proposed method performs the best among

Table 3
Objective evaluation: mean of 𝐷𝑠(𝑡) for various scenes and configurations.

Case 𝜃 Mean

Uniform mapping Lu et al. [6] Proposed method

butterfly 40◦ 0.112230 0.120356 0.043974
cam (L) 40◦ 0.093427 0.824781 0.043148
cam (R) 40◦ 0.120436 0.856510 0.060556
cam1b (L) 40◦ 0.131180 0.251062 0.086717
cam1b (R) 40◦ 0.128691 0.260109 0.089005
dweets (L) 40◦ 0.137989 0.208948 0.077300
dweets (R) 40◦ 0.128665 0.198681 0.069185
dancer 40◦ 0.346851 0.962201 0.214769
butterfly 90◦ 0.549204 0.251153 0.157225
cam (L) 90◦ 0.464607 0.941727 0.152238
cam (R) 90◦ 0.599748 0.956593 0.225033
cam1b (L) 90◦ 0.657464 0.507315 0.341004
cam1b (R) 90◦ 0.646345 0.536356 0.359439
dweets (L) 90◦ 0.685396 0.451480 0.289625
dweets (R) 90◦ 0.642425 0.411031 0.255143
dancer 90◦ 1.709182 1.449238 0.858678

Table 4
Objective evaluation: variance of 𝐷𝑠(𝑡) for various scenes and configurations.

Case 𝜃 Variance

Uniform mapping Lu et al. [6] Proposed method

butterfly 40◦ 0.007072 0.026133 0.001000
cam (L) 40◦ 0.013391 3.230232 0.001381
cam (R) 40◦ 0.015433 2.470027 0.005163
cam1b (L) 40◦ 0.083865 0.375567 0.072037
cam1b (R) 40◦ 0.084109 0.460068 0.081295
dweets (L) 40◦ 0.010071 0.073540 0.003026
dweets (R) 40◦ 0.007804 0.074220 0.002646
dancer 40◦ 0.031434 0.797369 0.026745
butterfly 90◦ 0.174683 0.051787 0.014210
cam (L) 90◦ 0.335818 4.000705 0.017767
cam (R) 90◦ 0.385220 2.645810 0.097365
cam1b (L) 90◦ 2.160249 2.197491 1.344434
cam1b (R) 90◦ 2.176553 2.677143 1.589080
dweets (L) 90◦ 0.245445 0.163865 0.048643
dweets (R) 90◦ 0.192821 0.161413 0.046976
dancer 90◦ 0.750359 1.891118 0.555956

them. Moreover, our temporal coherence preservation keeps not only
dynamic content but also static content stable, as can be seen in Table 4.

Subjective evaluation:

We invited 15 viewers to perform user case study. The test includes
2 different configurations:

1. A real-world curved screen with curvature angle 𝜃 = 40◦, as
shown in Fig. 12(a).

2. A virtual room including 5 screens (4 curved + 1 flat for ref-
erence) with curvature angle 𝜃 = 90◦, as shown in Fig. 12(b).

Each viewing experiment was performed at the curvature center of
the corresponding curved displays. For the real-world curved screen,
each participant stood at the curvature center directly. For the virtual
scene, each participant was asked to wear an Oculus Rift headset
and place themselves on the curvature center of each virtual display.
Test 1 took around 10 minutes per viewer and Test 2 took around 20
minutes per viewer. For each test, we measured the choice percentage
of each method. In Test 1, 3 sequences were displayed. The results of
each deformation method (uniform mapping, perspective mapping, Lu
et al. [6] and our proposed method) were shown in a random order.
In Test 2, 5 sequences were displayed. Four deformed results were
simultaneously displayed onto the curved surfaces. For reference, one
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Fig. 13. Subjective test results with different curvature angles. In the case 𝜃 = 90◦, the screen is simulated and viewed through the Oculus Rift.

flat screen showing the original input video was also present in the
virtual scene. The viewers were invited to pick their preferred method.
Fig. 13 shows the subjective results. In all cases, our proposed method
was picked the most, above uniform mapping, perspective mapping
and Lu et al. [6]. The deformed results processed by Lu et al. [6]
were least chosen in most scenes, because they cause visible waving
artifacts between frames. In butterfly scene, the flickering effect is not
so noticeable, which explains why some viewers selected the deformed
result by Lu et al. [6] as their preference.

5. Conclusions

In this paper, we present a video deformation method to solve
the problem of video projection onto a curved display with minimal
distortion and high temporal coherence between consecutive frames.
Our method avoids the over-preservation of foreground content and the
distortion of background. Moreover, the flickering or waving artifacts
are removed between consecutive frames. Both objective and subjective
evaluation show that our proposed method outperforms every other
existing work for video retargeting onto a curved surface.

To make our work more broadly applicable, future works include
depth estimation from stereoscopic video input so that we can remove
the depth map as a requirement. Furthermore, adaptive mesh represen-
tation formats can be used to improve the objective metric result rather
than the uniform grid used in our present work.
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