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Abstract The Iterative Closest Point (ICP) scheme has been widely used for the registration of surfaces and point clouds.

However, when working on depth image sequences where there are large geometric planes with small (or even without) details,

existing ICP algorithms are prone to tangential drifting and erroneous rotational estimations due to input device errors.

In this paper, we propose a novel ICP algorithm that aims to overcome such drawbacks, and provides significantly stabler

registration estimation for simultaneous localization and mapping (SLAM) tasks on RGB-D camera inputs. In our approach,

the tangential drifting and the rotational estimation error are reduced by: 1) updating the conventional Euclidean distance

term with the local geometry information, and 2) introducing a new camera stabilization term that prevents improper

camera movement in the calculation. Our approach is simple, fast, effective, and is readily integratable with previous

ICP algorithms. We test our new method with the TUM RGB-D SLAM dataset on state-of-the-art real-time 3D dense

reconstruction platforms, i.e., ElasticFusion and Kintinuous. Experiments show that our new strategy outperforms all

previous ones on various RGB-D data sequences under different combinations of registration systems and solutions.
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1 Introduction

The Iterative Closest Point (ICP) algorithm[1] has

been widely used for the registration of surfaces and

point clouds, and it plays a central role in various com-

puter vision and robotics applications, ranging from si-

multaneous localization and mapping (SLAM) to ob-

ject recognition and detection and to augmented and

virtual reality.

At its core, ICP aims to recover the transformation

between two point clouds by alternating a point match-

ing phase with a minimization of the total squared

error between matches. This simple idea has seen

many variations introduced over the years, e.g., by [2-

7]. For example, the point cloud data can be cleaned

up with filtering[8−11]. Different types of energy func-

tions, capturing different strategies of generating regi-

stration candidates can be employed, such as frame-

to-frame[12] or frame-to-model[8]. Specific data struc-

tures such as the truncated signed distance function

(TSDF)[13] and kd-trees[14] can help and hasten the dis-

covery of point correspondences. Additional informa-

tion collected from the input data, such as color[15,16]

or salient key-points[10], can also be used to increase

robustness.

When the input data has large planes with few

(or even without) details, existing ICP algorithms are

prone to tangential drifting and erroneous rotational

estimations. In such case the energy function does not

successfully penalize erroneous camera movements. In

this paper, we propose a novel energy function for-

mulation for scene reconstruction from RGB-D cam-

era inputs, as an alternative to the standard point-to-

point energy of [1], its improved variant of point-to-

plane[17], and the generalized probabilistic distribution

based model of [2, 18, 19]. In our approach, the rota-

tional estimation error and the tangential drifting are

reduced by: 1) updating the conventional Euclidean
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distance term to take local geometry information into

account, and 2) introducing a new camera stabilization

term that prevents improper camera movement in the

calculation.

Our modification is simple, fast yet effective.

Experiments on the TUM RGB-D SLAM dataset show

that our strategy outperforms all the matching energy

function variations stated above. Furthermore, our

solution is readily integratable with previous ICP al-

gorithms, through a simple substitution of the corre-

sponding terms in the energy function; thus all varia-

tions (e.g., using color or filtering) still apply.

Using our novel ICP energy function requires lit-

tle extra computational overhead compared with the

standard ICP pipeline. This enables us to generate

better and more robust registration results without

harming the usability of the ICP algorithm in real-

time scenarios. We showcase this by integrating and

benchmarking our novel ICP formulation in two state-

of-the-art real-time 3D dense reconstruction platforms,

ElasticFusion[20] and Kintinuous[21].

Our main contributions are as follows.

1) We provide insight into the fundamental draw-

backs of the conventional ICP algorithm that lead to

erroneous rotational estimations and tangential drift-

ing results.

2) Based on our analysis, instead of only using

the conventional Euclidean distance, we introduce a

geometry-aware energy function that leads to stabler

registration estimation, especially in datasets contain-

ing less-detailed large planes.

3) Our algorithm is readily integratable with state-

of-the-art SLAM systems and also achieves higher per-

formance when combined with orthogonal strategies

such as using color information or loop closure.

The remainder of this paper is structured as fol-

lows. Section 2 describes related work. In Section 3,

based on a novel analysis that directly reveals the rea-

sons causing failures of original ICP algorithm on real-

world datasets, we develop our approach that targets

at overcoming the drawbacks. Experimental results are

shown in Section 4 and finally we conclude and discuss

future work in Section 5.

2 Related Work

The ICP algorithm is one of the most popular meth-

ods used in the local refinement stage of the extensively

studied geometric registration problem[5,6,22,23]. The

problem in this stage of registration is mainly to ob-

tain a tight registration between surfaces[24,25], where

an initial estimate of the rigid motion is computed from

a former global alignment stage. Recently, the ICP al-

gorithm and its variances have found more popularity

in most real-time SLAM applications due to their sim-

plicity and efficiency[26−30].

However, the ICP algorithm is not perfect by itself,

with many unresolved difficulties affecting its perfor-

mance in practice, which leads to hundreds of research

attempts to improve its versatility. The ICP algorithm

has to match a new pose to a previous pose, which

is sensitive to how precise and noise-free the previous

and current poses are. There are filtering methods for

the input point cloud data proposed to reduce noise

from different practical sensors[8−11]. In contrast to the

original frame-to-frame strategy[1,12], frame-to-model

strategies[8,31] are proposed to further average out the

erroneous noise. Meanwhile, other visual features are

often used to assist matching in pose estimation, such as

considering matching of the color from RGB-D sensor

inputs[3,24], adding various keypoint descriptors[11,32],

which stabilize estimated camera motions and produce

more robust registration compared with vanilla ICP.

The cumulative errors from each estimation between

frames can result in the failure of loop closure, and

many researches tackle this problem by introducing

global[33] or local[34,35] optimizations. A recent work

uses re-localizing algorithm to enhance performance

when data contains fast camera motion[36]. Other stu-

dies explored the utility of relaxed assignments[37−39],

distance field representations[40], mixture models[41,42],

and local reference frame[43] for increasing the ro-

bustness of local registration, or using different data

structures such as kd-tree[14,15] and TSDF[13] or be-

ing assisted with a spatial hashing scheme[44] to en-

hance computational performance of the ICP algo-

rithm. Based on variations of ICP, integrated systems

such as Kinectfusion[8], Kintinuous[21], InfiniTAM[45],

and ElasticFusion[20] are widely used in computer vi-

sion. The evaluations of the related methods are usu-

ally performed on benchmarks[46,47].

The distance metric of ICP also evolves over

time. Originally the ICP algorithm is based on a

point-to-point calculation of distance metric[1], while

later on the point-to-plane method is proved to be

more efficient with better results[17]. Mainly adopted

in robotics for laser-beam scanned data inputs, the

normal-distributions transform (NDT) algorithm and

its variants (such as Generalized-ICP (GICP)[2], 3D-

NDT[48] and Color-NDT[49]) further use a probabilis-

tic distribution based model for distance metric. How-
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ever, the point-to-point and point-to-plane methods do

not consider local anisotropic geometry, and favor elimi-

nating normal-aligned displacement over tangential dis-

placements. On the other hand, the NDT-based algo-

rithms assume normal-aligned errors are much smaller,

and their weight should be much higher than tangen-

tial weights in matching optimization, which is true for

laser-beam scanned input in robotics but not true for

general RGB-D cameras widely used in computer vi-

sion. Contrary to the previous methods, we consider

local geometry and input error from RGB-D cameras,

enhancing camera pose registration by reducing rota-

tional estimation errors and tangential drifting.

During the pose estimation between input frames,

outlier handling is another problem that affects total

performance of the ICP algorithm. These outlier points

are usually recognized according to its mismatching

distance[7], rank in all pairs based on some metric[50],

or consistency with neighboring pairs[51]. Many studies

consider it suffice to discard the outliers[8,24], and a few

researches such as GICP[2] indirectly include them in

the computation with its distribution calculation. In-

stead of discarding the outliers, in our approach we uti-

lize them in the pose estimation to help stabilize camera

motion.

3 Approach

In this section, we first recap the conventional ICP

algorithm and analyze the reason of its registration er-

ror. Then we introduce our novel ICP algorithm that is

able to overcome the drawbacks in previous strategies.

3.1 Point-to-Plane ICP

As a widely adopted ICP strategy, the point-to-

plane[17] ICP is generally considered to be an up-

gradation of the point-to-point[1] ICP, making it more

suitable in various SLAM applications. Therefore, we

settle to briefly recap the point-to-plane ICP in this

subsection.

The point-to-plane ICP registers two point clouds

from sequential inputs of two frames (or one frame and

the global model in the frame-to-model case), and gives

the estimation of camera pose change. An initial guess,

usually using identity (or the camera pose of the last

frame in the frame-to-model case), is first provided to

generate an initialized set of matching-point pairs. As-

suming that the point vk
t from the current frame t

matches with the point vk from the previous frame,

and the normal vector of vk is denoted as nk, the cam-

era pose estimation problem is equivalent to minimizing

the following energy function[20]:

E =
∑
k

∥(vk − exp(ξ̂)Tvk
t ) · nk∥2, (1)

where T is the transformation matrix, and ξ̂ corre-

sponds to a small change of the camera pose. The

summation consists of all Euclidean distances from each

transformed vk
t position to the corresponding mapping

on the tangential plane of vk. Given ξ̂ is small, such an

energy function can be further linearized with respect

to ξ using the Rodriguez equation, i.e., Jicpξ + ricp,

where Jicp is a combined measurement Jacobian form

and ricp is a residual[20]. Following this idea, an opti-

mal solution of ξ can be obtained by the typical least

square method.

3.2 Failure Case Analysis on Point-to-Plane

ICP

The point-to-plane ICP is widely used in computer

vision applications whose inputs are captured with vari-

ous depth cameras. Working on depth image sequences,

however, this ICP algorithm is easy to generate erro-

neous camera pose estimations. This is much worse

when the captured view has only a few large planes with

few or even without details. A key observation is that

such failure cases consist of two kinds of wrong cam-

era pose estimation: 1) erroneous rotational estimation

of the camera movement, and 2) tangential drifting of

camera along a certain plane.

Generation of the rotational error can be analyzed

with Fig.1. In this simple scene, suppose the ideal

3D model consists of a large plane and a small pla-

nar square perpendicular to it. Due to the precision of

the input device (e.g., an RGB-D camera), the “cur-

rent” and “previous” frames used in the calculation do

not perfectly match with the “real object” and have

small errors. Consider the case that their errors are

both of a checker-board-like distribution but have re-

versed signs on the big plane as shown in Fig.1(a). The

point-to-plane method evaluates the mismatch energy

of different matching results and finds an optimized re-

sult with the minimum mismatch energy. In Fig.1 we

select two possible matches that can be evaluated by

point-to-plane ICP: one ideal match corresponding to

the correct pose estimation (upper-right) and one 90◦

rotated match which is wrong (lower-right). We will

show in the following that as the point-to-plane ICP
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Fig.1. Erroneous rotational estimation caused by point-to-plane ICP. The scene consists of a large plane and a small square perpendic-
ular to it. Small circles indicate sample points with input errors from device. White color means an error towards positive-z direction
and black towards negative-z direction. Arrows indicate point match in the registration. When the plane is large enough compared
with the square, point-to-plane ICP will lead to erroneous 90◦ rotated match that eliminates the mismatch error on the large plane.
Gaps between two large planes in this figure are drawn purely for visual clarity and do not exist in the registration.

minimizes the perpendicular mismatching distance be-

tween two frames, when the plane is sufficiently larger

(as explained below) than the small square, the opti-

mized result will be a wrong match that rotates the

current frame by 90◦s. We need only simple calculation

to see the reason. Suppose we have one sample point in

each 0.01 m2 area, the small square has the side length

of 0.2 m (4 samples) and the large-enough plane has

the side length of 2 m (400 samples), the input error

from device is 0.01 m. Using the energy function of

point-to-plane ICP, in the ideal match, each point pair

on the large plane has a mismatch distance of 0.02 m

and each point pair on the small square has 0 m mis-

match distance, thereby the total mismatch energy is

(0.02 m)2 × 400 = 0.16 m2, where 400 is the number of

sample points. In the 90◦ rotated wrong match, each

point pair on the large plane has a mismatch distance

of 0 m. Two of the four sample points on the small

square have mismatch distance of 0.2 m, and the other

two have that of 0.1 m. Therefore the total mismatch

energy is 2 × (0.2 m)2 + 2 × (0.1 m)2 = 0.1 m2. The

point-to-plane ICP will thus be in favor of the wrong

match compared with the ideal match, resulting in er-

roneous rotation. Note that in the latter wrong match,

the vector mismatch-distance of the square has a tan-

gential opponent measured at its estimated position. If

we take this into consideration and put a larger weight

on such a tangential mismatching distance based on lo-

cal geometry, the energy of the wrong match may be

able to scale up and surpass the energy of the ideal

match, leading to correct estimation toward the ideal

match. We will discuss this in more detail in Subsec-

tion 3.3, and a real example on real-world dataset is

provided there.

On the other hand, it is not hard to see that the

tangential drifting along a large plane in the scene is a

direct result of the point-to-plane ICP algorithm, since

the dot product with nk in (1) totally omits tangential

mismatches in the calculation. However, such tangen-

tial drifting will create points (outliers) that are un-

able to find a good-enough match in the calculation.

In state-of-the-art SLAM systems such as in Elastic-

Fusion, such points will be treated as outliers, which

means a large tangential drifting will produce many

outlier points as shown in Fig.2. This inspires us to

penalize outlier points to prevent tangential drifting,

more details will be described in Subsection 3.3.

Outlier

Previous

Current

Fig.2. Tangential drifting along a finite plane creates a large
number of outliers (gray region).

Plane size has influence in the above two aspects.

Generally, in data sequences the scene contains many
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planes of different sizes and alignments. While using

(1), the optimization loop will be in favor of giving

an estimation that strictly fits objects in their surface

normal direction. In other words, if the noise or error

from the input device generates competing mismatch

between surfaces aligned in various directions, (1) will

prefer to match larger planes in their normal directions

first, over their tangential drift and the resulting mis-

match of other smaller objects.

3.3 Geometry-Aware ICP

Based on the above observation, we propose a novel

geometry-aware ICP solution to resolve the specific

problem of erroneous rotational estimation and tangen-

tial drifting.

3.3.1 Geometry-Aware Energy Function

For improving rotational estimation, the Euclidean

energy term is substituted by a new term as follows:

E1 =
∑
k

∥DTG̃D∥, (2)

where D = ||(vk−exp(ξ̂)Tvk
t )·nk||nk is the mismatch-

ing distance vector with symbol meanings as described

in Subsection 3.1.

Intuitively, we no longer use the Euclidean distance

between two points, but modify it with a matrix G̃. To

explain G̃, firstly a matrix G can be defined from the

covariance matrix computed within a point’s neighbor-

hood as:

G =

∑
x∈N (x− x̄)(x− x̄)T

|N |
,

where N denotes the set of neighboring points, and x̄

is the average position vector.

The effect of the above G matrix is serving as an

ellipsoidal kernel to the distance measurement, with its

shortest axis along the geometric local normal direction,

and longer axis along tangential directions. Due to the

property of the covariance matrix, if X is a mismatch-

ing distance vector, XTGX effectively scales distance

in tangential directions proportional to the correspond-

ing eigen values. Therefore, such energy function is

geometry-aware in comparison with the Euclidean dis-

tance based formulation.

G can be easily computed from a 5 × 5 pixel win-

dow on the input frame centered at each point. We

also normalize G utilizing (
∑

x∈N ∥x− x0∥)/|N |, i.e.,
the average of distances from the current point to its

neighboring points, in order to count for scale change

over depth. The final computation of kernel matrix G

is:

G =


|N |γ

(
∑

x∈N∥x−x0∥)γ (
∑

x∈N (x−x̄)(x−x̄)T

|N | ), if |N | > kr,

knI, if |N | 6 kr,
(3)

where x0 is the position of current point. For the few

stand-alone points that have too few neighbors (less

than kr), to avoid unreliable covariance matrix calcu-

lation, we set G = knI with kn as a constant value.

Since far-away points have larger errors, in order to re-

duce far-away-point influence, γ is set to 2 in frame-to-

model systems where a depth cut-off method is usually

integrated, and is set to 4 in frame-to-frame systems

where no such cut-off is applied.

Then G̃ should be G̃ = RGRT, where R is the

rotation matrix between the current frame and the es-

timated pose, i.e., xe = Rxc with xe,xc which refer to

a direction vector in estimated and current coordinate

respectively. This ensures distance scaling is correctly

calculated in the estimated-pose local coordinate but

not in camera screen coordinate. Note this also makes

the optimization problem no longer quadratic. A solu-

tion is, in each ICP iteration, treating G̃ as a known

value calculated from the estimated rotation from the

last iteration. We use this strategy in our approach,

and in our experiments it always converges under real-

time performance.

Note if G = I, (2) is exactly the distance metric

in previous point-to-plane ICP. Then, in (3) when kn
is used, we effectively calculate the standalone points

using the point-to-plane ICP distance metric with a

weight of kn. This weight should be smaller than the

smallest eigen value of G, i.e., the eigen value along

normal direction, computed from input data (approxi-

mately no larger than 0.015 for datasets we use).

For tangential drifting, since it will generate out-

lier points, a natural consideration is to make use of it

for a penalty term. We introduce a novel stabilization

term that utilizes the outlier points to stabilize camera

motion instead of simply discarding them. The stabi-

lization term is given as

E2 =
∑
k∈Ω

∥∥∥vk
t − exp(ξ̂)vk

t

∥∥∥2 ,
where Ω is the set of outlier points. As mentioned be-

fore, a point is treated as an outlier when it cannot find

a match or the distance to its supposed match exceeds

a threshold.
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The effect of this term can be observed from an

extreme case, where all points are outliers. In this

case the lowest penalty energy is given when camera

pose remains unchanged. Thus, this term utilizes out-

lier points to stabilize camera motion. This strategy

is also reasonable in that between frames that contain

many outliers, it is more proper to temporarily keep

camera motion stable instead of allowing random regi-

stration solely by the remaining points. In practical

SLAM tasks, this simple camera stabilization term can

effectively reduce tangential drifting in the calculation.

More details will be given in Subsection 4.1.

With the above-mentioned tangential weighting and

stabilization terms, the final energy function of our ap-

proach is given as:

E =
∑
k∈Φ

∥DTG̃D∥+ t ·
∑
k∈Ω

∥vk
t − exp(ξ̂)vk

t ∥2, (4)

where Φ contains all points except outliers, Ω contains

the outlier points, and t is a weight factor of the stabi-

lization term.

Our approach computes the energy in two follow-

ing aspects: reconsidering normal and tangential mis-

match distances by adaptively weighting the tangential

mismatch distance through kernel matrix G, and find-

ing the trade-off between stabilization and movement

of camera pose through the stabilization term.

3.3.2 Discussion Compared with NDT Methods

In our approach, (2) is different from the distance

metric used in the NDT-based algorithms[2,18]. The

NDT-based algorithms assume the normal-aligned error

is much smaller than tangential errors from the input

devices and their algorithms are designed to strengthen

bias toward eliminating normal-aligned mismatch. As

a result, they use the Mahalanobis distance instead of

the Euclidean distance, which is effectively always the

invert of the covariance matrix. The basic assumption

of NDT-based algorithms applies well in robotics, since

the main focus there is to recover registration from

laser-scanned data, which has high confidence on the

normal direction. However, for general RGB-D cameras

used in computer vision, certain amount of input error

or noise within any direction is inevitable, and mis-

matching displacement along different directions should

be treated equally. We show in Subsection 4.2 that in

such data sequences our approach performs better than

the NDT-based assumption that uses the Mahalanobis

distance.

It is also interesting to note that the covariance ma-

trix in (2) is assumed to be always invertible in the

NDT-based methods. Since the covariance matrix is

symmetric and positive-semidefinite, if the assumption

that it is invertible is followed, then (2) is a generalized

quadratic distance metric that weights mismatch dis-

tances in different directions with an ellipsoidal kernel

(G̃) instead of an isotropic kernel (I) used in the point-

to-plane distance metric[52]. Note this also means our

term, developed from a completely different view aspect

that directly analyzes drawbacks of original ICP algo-

rithm, is not mathematically equivalent to variants of

NDT-based terms, since we do not need any approxima-

tion or invertible assumption to strictly cover original

ICP term by setting G = I.

4 Experiments

We choose the state-of-the-art dense visual SLAM

system ElasticFusion[20,28] as our main base system

for the comparison. Their online codes not only pro-

vide better original-ICP registration results when only

using depth information than other Lie-algebra based

systems such as InfiniTAM[45], but also provide many

options such as loop closure. In addition to experi-

ments on Elasticfusion, we also test our algorithm

on Kintinuous[21]. We run the online codes of these

open-source systems on an NVIDIA GeForce GTX 970

graphics card and obtain the comparison data from

their default parameters in order to evaluate the over-

all performances, and we assign kr = 5, kn = 0.01,

t = 0.3 in all our experiments unless otherwise explicitly

stated. We perform the experiments on TUM RGB-

D benchmark[46] and evaluate the registration perfor-

mance using the absolute trajectory (ATE) root-mean-

square error metric (RMSE)[46] criteria.

In the comparisons, we first only use the depth infor-

mation in the experiments in Subsection 4.1 and Sub-

section 4.2 to demonstrate the effectiveness of our ap-

proach upon itself. However, other features of the input

data or improvement technique over ICP can be easily

integrated by simply substituting our energy terms for

previous distance metric term, and we show the compa-

rison of integration results with some common methods

in Subsection 4.3. In the following, “default ICP” refers

to the online ICP code of ElasticFusion and Kintinuous

using point-to-plane ICP. For speed performance, calcu-

lating ICP using the default code of ElasticFusion runs

at 4.5 ms/frame; after substituting our energy terms for

the default distance metric term into the ElasticFusion
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code, our approach runs at 12.1 ms/frame, achieving

good convergence with real-time performance.

4.1 Comparison with Point-to-Plane ICP

We compare our approach with the point-to-plane

ICP in both frame-to-frame strategy and frame-to-

model strategy.

Table 1 shows the comparison result in frame-to-

frame SLAM tasks. The stabilization term is not in-

cluded in our approach in this comparison. Our ap-

proach achieves better performance in almost all the

data sequences used in the test, with an average 50%

improvement of pose estimation accuracy.

The frame-to-model strategy is generally considered

to be more robust than the frame-to-frame strategy,

and is adopted by most recent SLAM systems. Our fol-

lowing experiments will be mainly with this strategy.

In this subsection, we use ElasticFusion as our base

system.

Table 1. Comparison of ATE RMSE on the TUM RGB-D Benchmark[46] Between Point-to-Plane

ICP (PPICP) and Our ICP in Frame-to-Frame Manner

1 360 1 desk 1 room 1 rpy 2 xyz 2 desk 3 cab 3 lcab 3 loh 3 snf 3 snn

PPICP 0.175 2 0.078 0 0.229 2 0.075 6 0.183 3 1.150 3 0.586 2 1.203 7 0.519 4 0.180 7 0.178 8

Ours 0.149 1 0.066 4 0.189 2 0.053 4 0.087 0 0.610 5 0.366 0 0.708 9 0.317 5 0.076 7 0.144 1

Note: Stabilization term is not included. Bold numbers are the better ones.

Table 2 and all following tables illustrate the re-

sult of pose estimation on different data sequences us-

ing frame-to-model manner. In Table 2, on most data

sequences, the performance of our approach largely ex-

ceeds that of the point-to-plane ICP. Table 2 also shows

quantitatively the separate improvement of each of our

modifications when applied alone. The “metric” col-

umn shows the results applying G̃ but without the

stabilization term. The “stabilization” column shows

the results directly adding the stabilization term to the

energy function of default ICP. One can observe that

enhancements in rotational estimation and tangential

drifting have different extent of importance depending

on data sequences, but each of them as well as their

combination has better performance than the default

ICP on almost all the datasets.

Table 2. Performance Comparison of Original Point-to-Plane

ICP and Our Improved ICP Energy Function Formulations

Sequence Default Metric Stabilization Both

1 360 0.170 2 0.175 1 0.170 9 0.116 8

1 desk 1.006 4 0.049 7 0.051 4 0.057 5

1 room 0.431 2 0.190 1 0.186 0 0.188 5

1 rpy 0.032 4 0.031 3 0.030 7 0.030 7

2 xyz 0.019 9 0.019 7 0.019 4 0.019 7

2 desk 0.133 0 0.117 6 0.121 1 0.117 3

3 cab 0.394 8 0.350 2 0.064 1 0.035 3

3 lcab 0.176 0 0.089 6 0.120 7 0.118 2

3 loh 0.122 7 0.093 2 0.095 6 0.097 0

3 snf 0.068 8 0.030 9 0.030 6 0.030 3

3 snn 0.020 3 0.025 4 0.025 2 0.024 6

Note: default: the ATE values of the original ICP; metric: our
ICP with only distance metric modified; stabilization: our ICP
with only stabilization term; both: our ICP with both modifica-
tion applied. Bold numbers are the better ones.

Figs.3 and 4 qualitatively show the registration re-

sults generated by our approach and the point-to-plane

ICP. In Fig.3, both the modified distance metric and the

stabilization term contribute to a better result. Note

how the modified distance metric corrects erroneous ro-

tational estimation in default ICP, and the stabilization

term suppresses tangential drifting. Fig.4 is another

data sequence easy to cause camera pose drift. Again

our approach is capable of correctly registering with

depth information alone.

We note that in Table 2 some ATE RMSE values are

slightly higher when both modification to distance met-

ric and stabilization term are applied than when only

one of them is applied. We take the result on 1 desk

depth input as an example. In Fig.5 we show the recon-

struction results around the critical frames that point-

to-plane ICP fails. It can be observed that at that time

the input frame contains only a few large planes, and as

a result erroneous rotational estimation and large drift-

ing both occur using point-to-plane ICP, which exactly

corresponds to our analysis in Subsection 3.1. Applying

either part of our approach can correct the estimation

at this critical point. This example shows that one rea-

son for better results obtained by our approach is that

it automatically enhances camera pose estimation es-

pecially at critical input frames where point-to-plane

ICP is easy to fail. When the two aspects of our ap-

proach complement each other, such as in 1 360, and

3 cab, the result can improve significantly. When the

two aspects correlate as in 1 desk, or one of them is im-

proper to apply (e.g., in the extreme case, no worry of

tangential drifting leads to no need of camera stabiliza-

tion), applying only one of them may be a better choice,
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(b)(a) (c) (d) (e)

Fig.3. Qualitative comparison of scene models reconstructed by different algorithms on 3 cabinet sequence. (a) Reference original color
image from the data sequence. (b) Reconstruction result of ElasticFusion. (c)–(e) Results of our method with only modified distance
metric, only adding stabilization term and combination of the two factors, respectively.

(b)(a) (c)

Fig.4. Qualitative comparison of scene models of 3 large cabinet data sequence reconstructed by default ICP and our approach on
ElasticFusion. (a) Reference original image from the data sequence. (b) Result of default ICP. (c) Result of our approach.

(b)(a) (c) (d)

Fig.5. Illustration of critical frames using 1 desk. The top, middle and bottom rows are the inputs and reconstruction outputs using
depth information at three sequential frames (252–254) by ElasticFusion. (a) Input depth data (with RGB input at upper-left corner
as reference). (b) Camera pose estimation of default ICP. (c)(d) Camera pose estimation applying our modification to distance metric
and applying the stabilization term, respectively. It is clear that the default ICP behaves just as our analysis in Subsection 3.1, and
both of our two enhancement aspects are able to provide correct camera pose estimation at this critical point.
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though in Table 2 we can observe in most of such times

the difference between “both” and using either single

strategy is small compared with the improvement to

point-to-plane ICP.

It is worth noting that datasets in the TUM RGB-

D benchmark all contain more or less some planar fea-

tures. Our approach has shown performance from being

at least acceptable to large improvements in all experi-

ments. This includes datasets that contain many small

objects with non-aligning surface normals (e.g., 1 desk,

1 rpy, and 1 360) and shows the generality of our ap-

proach.

4.2 Comparison with Distance Metric from
NDT

We also test the performance of Mahalanobis dis-

tance used by the NDT-based methods on the data se-

quences both with and without our stabilization term.

Shown in Table 3, our approach applies much better in

more than 70% of the data sequences tested, with about

half of the data sequences having large improvements,

and is hardly worse in the remaining data sequences.

4.3 Further Integration with Existing Methods

In this subsection we demonstrate the flexibility of

our approach in combination with existing variations of

the ICP algorithm. We test the performance on both

surfel-based ElasticFusion and voxel-based Kintinuous.

The latter integrates color information and loop closure

optimization. In experiments of this subsection, we al-

ways use our full energy function (4) in our approach.

Shown in Table 4, in general, our approach produces

better results under various combinations of strategies,

and has comparable results on certain datasets that al-

ready show small ATE values (less than 0.04).

Combination with Color Information. Color infor-

mation is proved to be useful in SLAM problems, and

is popularly used by recent registration algorithms. Ta-

ble 4 shows a comparison result using Kintinuous sys-

tem with the color information combined in the opti-

mization. It is to be noted that the modification to the

distance metric in our approach also affects the choice

of weight factor w before color energy term. In our

experiments w is set to 250. For the Kintinuous system

we set t = 0.000 5, and our result has generally smaller

ATE RMSE values on most of the data sequences. Ta-

ble 4 shows a comparison result using ElasticFusion,

where our approach also shows better results.

Table 3. Comparison of Our Approach Using Covariance (C)

Matrix and Using Mahalanobis Distance Which Uses Inverse

Covariance (IC) Matrix Adopted by NDT-Based Methods

Sequence C IC C+S IC+S

1 360 0.175 1 0.504 1 0.116 8 0.282 5

1 desk 0.049 7 1.932 3 0.057 5 0.738 5

1 room 0.190 1 0.163 9 0.188 5 0.164 8

1 rpy 0.031 3 0.031 4 0.030 7 0.031 3

2 xyz 0.019 7 0.018 5 0.019 7 0.018 5

2 desk 0.117 6 0.115 9 0.117 3 0.115 8

3 cab 0.350 2 0.500 3 0.035 3 0.523 9

3 lcab 0.089 6 0.140 0 0.118 2 0.139 2

3 loh 0.093 2 0.119 0 0.097 0 0.121 9

3 snf 0.030 9 0.085 4 0.030 3 0.085 1

3 snn 0.025 4 0.065 1 0.024 6 0.188 9

Note: We show both situations with and without the stabiliza-
tion (S) term. Our approach applies much better in more than
70% of the data sequences tested, and is hardly worse in the
remaining data sequences. Bold numbers are the better ones.

Table 4. Five Groups (a)–(e) of Comparisons Between Different Options of Kintinuous (Kint)

and ElasiticFusion (Elas) Measured by ATE RMSE

Setting Sequence

1 360 1 desk 1 room 1 rpy 2 xyz 2 desk 3 cab 3 lcab 3 loh 3 snf 3 snn

Kint (a) c, d 0.147 0 0.083 3 0.217 4 0.035 4 0.057 8 0.115 4 0.200 6 0.089 1 0.045 9 0.021 4 0.031 3

c, o 0.119 9 0.074 0 0.180 4 0.044 4 0.022 5 0.078 6 0.029 8 0.062 3 0.029 9 0.022 4 0.030 9

Elas (b) d 0.170 2 1.006 4 0.431 2 0.032 4 0.019 9 0.133 0 0.394 8 0.176 0 0.122 7 0.068 8 0.020 3

o 0.116 8 0.057 5 0.188 5 0.030 7 0.019 7 0.117 3 0.035 3 0.118 2 0.097 0 0.030 3 0.024 6

(c) c, d 0.273 0 0.025 6 0.224 2 0.040 8 0.012 9 0.073 2 1.008 4 0.597 0 0.022 6 0.027 9 0.840 5

c, o 0.252 3 0.030 7 0.174 6 0.034 2 0.012 2 0.070 2 0.809 1 0.066 9 0.032 4 0.037 2 0.030 2

(d) l, d 0.170 2* 1.006 4* 0.431 2* 0.032 4* 0.018 7 0.094 2 0.526 6 0.176 0* 0.106 5 0.068 8* 0.020 3*

l, o 0.116 8* 0.058 1 0.188 5* 0.030 7* 0.019 3 0.117 3* 0.035 3* 0.118 2* 0.097 0* 0.030 3* 0.024 6*

(e) c, l, d 0.273 0* 0.025 5 0.224 2* 0.040 8* 0.012 0 0.077 4 1.008 4* 0.597 0* 0.023 7 0.027 9* 0.538 3

c, l, o 0.252 3* 0.031 5 0.174 6* 0.034 2* 0.011 9 0.070 2* 0.809 1* 0.066 9* 0.032 4* 0.037 2* 0.030 2*

Note: These options include: with color (c), with loop closure (l), using our ICP (o), and using default ICP (d). The star on the
number means that the data sequences have not triggered the loop closure. Bold numbers are the better ones in each group.
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Combination with Loop Closure Optimization. To

make full use of the visual information, recent visual

SLAM systems have integrated loop closure detection

as an important technique to reduce accumulated drift

when the camera observes old landmarks. We utilize

the loop closure algorithm in ElasticFusion and test the

performance of our approach combined with loop clo-

sure optimization. Shown in Table 4, our approach also

performs better on most of the data sequences.

Combination with Both Color and Loop Closure. An

integration of combining both color information and

loop closure optimization, based on the ElasticFusion

system, is also tested in our experiments. Again our

performance has smaller ATE RMSE values in most of

the data sequences shown in Table 4.

4.4 Limitation Discussion

In general, our approach concentrates on handling

the erroneous rotation and tangential drifting due to

the default ICP algorithm. It does not enhance per-

formance over failure cases due to other issues such as

rapid jittering, fast motion of the camera, or missing

data inputs. That is, our algorithm follows the common

assumption that small value of ξ is not much violated,

and the stabilization term can be less effective when in-

put sequence contains rapid jittering or fast motion of

the camera. Local geometric estimation in these cases

can also be worse, resulting in inaccurate computation

of distance metric. In such cases our approach on depth

alone can give only comparable results (e.g., fast rota-

tion case in 1 rpy, jittering in 3 snn). We note that in

the cases on which our approach does not perform well,

the default ICP usually does not perform well either.

Alternative assistant techniques such as providing bet-

ter initial guesses will be further needed to improve the

performance on related datasets.

It is to be noted that in general cases, the stabiliza-

tion term has a limitation that it can count in newly ap-

peared points when there is no match for them. Theo-

retically, these points should not prevent the camera to

move. However, if we assume the camera moves slowly,

new points are revealed under the following two situa-

tions. 1) New points are revealed on the “boundary” of

existing planes. Such newly revealed points are much

fewer than existing points, and the stabilization term

is always 102–104 times smaller than the other term in

good matching, thereby the possible induced error is

small. 2) A new plane is revealed. The new plane is

“new” only at one single frame, and the possible tem-

porary influence can be corrected by later calculations.

Our experiments have shown that the small possible

drawbacks during good matching are out-weighted by

the total benefit of preventing large tangential drifting.

A failure case of our approach is shown in Fig.6.

We perform this experiment on the 3 teddy dataset on

an NVIDIA GeForce 1080Ti GPU. In this dataset, the

depth input sequence contains lots of frames with exces-

sive missing depth values. Unlike in other datasets, in

3 teddy the outlier points are so many that they begin

to prevent camera motion in a long time (more than

500 frames), leading to pose estimation failure before

the depth input finally becomes good again.

5 Conclusions

In this paper a novel energy function formulation

is proposed for the ICP algorithm, which reduces rota-

tional estimation error and tangential drifting of camera

pose. Experiments based on state-of-the-art real-time

(b)(a) (c) (d) (e) (f)

Fig.6. Failure case due to excessive missing input data. Upper row: (a)(b) the 1 500th and the 2 048th frame of input video, respectively.
(c)(d) Reconstructed models of default ICP at those frames, respectively. (e)(f) Reconstructed models of our approach at those frames,
respectively. Bottom row: (a)–(f) Depth data from intermediate frames 1 500, 1 560, 1 708, 1 898, 1 942, 2 048, respectively. Excessive
missing data causes the stabilization term to prevent camera moving, resulting in the askew shape of our approach at frame 2 048.
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3D dense reconstruction platforms, e.g., ElasticFusion

and Kintinuous, showed that our method outperforms

previous matching energy function variations on the

TUM RGB-D SLAM dataset using the ATE RMSE cri-

teria. The proposed method is simple, fast yet effective.

Moreover, our solution is readily integratable with pre-

vious ICP algorithms using color or loop closure.

For future work, we would like to in-depth investi-

gate the problem of adaptively integrating our distance

metric with previous ICP algorithms for the best regi-

stration result on different data sequences, e.g., adap-

tively determining the best color weighting when using

the color information.
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