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Abstract

In the task of interactive image segmentation, users ini-

tially click one point to segment the main body of the target

object and then provide more points on mislabeled regions

iteratively for a precise segmentation. Existing methods

treat all interaction points indiscriminately, ignoring the

difference between the first click and the remaining ones. In

this paper, we demonstrate the critical role of the first click

about providing the location and main body information of

the target object. A deep framework, named First Click At-

tention Network (FCA-Net), is proposed to make better use

of the first click. In this network, the interactive segmenta-

tion result can be much improved with the following bene-

fits: focus invariance, location guidance, and error-tolerant

ability. We then put forward a click-based loss function and

a structural integrity strategy for better segmentation effect.

The visualized segmentation results and sufficient experi-

ments on five datasets demonstrate the importance of the

first click and the superiority of our FCA-Net.

1. Introduction

Interactive image segmentation aims to segment the in-

stances of interest with minimal user input. It directly ben-

efits many applications, e.g. image editing [8, 11, 29] and

medical imaging analysis [46]. Recent years, with the pop-

ularization of data-driven deep learning techniques, the de-

mand for mask-level annotations has increased dramatically

in some fields, such as salient object detection [4, 9, 14, 23],

semantic segmentation [34], instance segmentation [21, 35],

camouflaged object detection [15], and image/video manip-

ulation [17, 28, 48]. Efficient interactive segmentation tech-

nologies are in urgent need to alleviate the annotating cost.

Therefore, more and more researchers are carrying out ex-

tensive exploration in this field.

Many ways of interaction have been explored, such as

bounding boxes [10, 43], scribbles [2, 6], and points [25,

30, 31, 37, 47]. Drawing a bounding box as the interac-

tion is a widely-used and convenient way. However, in most

Figure 1. The crucial role of the first click in our method. We

utilize the first click as a segmentation anchor to guide other clicks

for a precise segmentation, while the conventional click-based in-

teractive segmentation methods treat all clicks indiscriminately.

cases, users usually need to further correct the segmentation

results which are not satisfactory enough. Therefore, the

more practical approaches are based on interaction points

or scribbles, which can further improve the segmentation re-

sult by iteratively marking the mislabeled areas. Compared

with drawing scribbles, the clicking for points places less

burden on users because it does not require a drag process.

The typical interaction workflow of point-based methods,

seen in Fig. 1, is as follows: Users first provide a positive

point on the target object. According to the initial segmen-

tation result, users further provide a positive point on the

foreground or a negative point on the background, and the

segmentation result is iteratively refined until it meets the

users’ requirement.

A mount of traditional and deep learning based meth-

ods have been explored in this direction. For most exist-

ing works, they use all interaction points indiscriminately

to generate the final predictions. However, we observe that

not all interaction points have the same segmentation ef-

fect. We collect the statistics of real human interactions over
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2000 images on an interactive segmentation method [30],

as shown in Tab. 1. We find that the first click often plays

an important role in interactive segmentation. The perfor-

mance improvement of the first point is remarkable and the

first click is usually close to the center of the target object.

Combined with the workflow mentioned above, there is an

intuitive observation that the first click is of importance and

it can serve as a location indication and global information

guidance for the target object. From Fig. 1, we can see that

the object segmentation can obtain a fine initialization with

the first click. On contrary, the goal of other interaction

points is to achieve better segmentation based on the result

of the first one. Thus, the first point is more conducive to

obtaining the overall information of the object, while the

other points focus on refinement. Based on the analyses

mentioned above, we conjecture that specially treating the

first click will benefit interactive segmentation.

In this paper, we are the first to treat these two kinds

of points separately. We propose a First Click Attention

Network (FCA-Net), where a simple path on the basic seg-

mentation network is constructed for further verification.

In our network, we use the first click as the side input to

supervise the global segmentation. With the first click as

an anchor for interactive segmentation, the location and

main body information of the target object can be better

guided. The prediction mask will focus on the area around

the first click and get a better result. For network train-

ing, we propose an improved loss function, which takes all

clicks provided by users into consideration and focuses on

these regions around clicks. We finally raise a new post-

process strategy, whereby some small mispredicted areas

could be feasibly removed, and the structural integrity of

the segmented object could be maintained. We conduct

comprehensive experiments and achieve the state-of-the-art

performances on GrabCut [43], Berkeley [39], PASCAL

VOC [13], DAVIS [42], and MSCOCO [32] datasets. Re-

sults and analyses of comparative experiments prove the

uniqueness of the first click and effectiveness of our pro-

posed methods.

Our contributions can be summarized as follows:

⊲ This is the first work to demonstrate the critical role of

the first click. We also propose a FCA-Net, which is

equipped with a simple yet effective module for utiliz-

ing the guidance information of the first click.

⊲ We propose the click loss considering annotations of

users and a structural integrity strategy, which is help-

ful in the task of interactive segmentation.

⊲ The state-of-the-art results over five datasets demon-

strate the importance of the first click and effectiveness

of our FCA-Net, click loss function, and structural in-

tegrity strategy.

No. 1 2 3 4 5 6 7 8 9 10

PI .751 .076 .045 .027 .020 .017 .015 .015 .009 .010

CD .769 .312 .243 .207 .201 .211 .189 .188 .178 .186

Table 1. Statistics of user interactions. PI: Performance improve-

ment (mean IoU) by adding different interaction points. CD: Cen-

trality degree for describing how close the point is to the center of

the object (only for positive points). Higher CD means closer to

the center. The computational details are mentioned in Sec. 3.5.

2. Related Work

In the early years, most traditional methods of interac-

tive segmentation mainly made use of hand-crafted features.

Some research methods such as [40] paid much attention

to the boundary properties. Approaches based on graphical

models became more popular after [6], where the interactive

segmentation task is modelled as a graph cut optimization

problem and it can be efficiently solved by the well-known

min-cut/max-flow algorithm [5]. Among them a classic

method based on graph cut called GrabCut was proposed

in [43]. It takes the Gaussian mixture model as the color

model and the bounding box as input to simplify the seg-

mentation process. Kim et al. [26] improved the algorithm

of random walk which is proposed in [18] with restart. Kim

et al. [27] also introduced a new higher-order formulation,

additionally imposing the soft label consistency constraint.

Gulshan et al. [19] and Bai et al. [3] both applied geodesic

distance for optimization in interactive image segmentation.

Bai et al. [2] provided an error-tolerant method, which al-

lows users to have some wrong interactions. These methods

based on low-level features cannot adapt to object segmen-

tation in complex and variable scenes.

Neural networks have the ability to perceive complex

global and local features. With the popularization of deep

learning, more and more researches have been trying to ap-

ply neural networks to interactive segmentation. In recent

years, Xu et al. [47] first proposed a CNN-based model

with some effective point sampling strategies for training

in this field. Then, Liew et al. [31] proposed a RIS-Net to

capture regional information according to pairs of positive

and negative points for local refinement. Song et al. [44]

applied reinforcement learning to make computers gener-

ate more potential interaction points. Scuna et al. [1] uti-

lized recurrent neural networks to get precise segmentation

which can be represented as a polygon consisting of mul-

tiple points. Then Ling et al. [33] improved the polygon-

based method above with graph convolutional networks re-

cently. Li et al. [30] used neural networks to provide and

select a more accurate choice to solve ambiguity situations

in interactive segmentation. Maninis et al. [38] provided a

novel interactive way about extreme points for segmenta-

tion. Mahadevan et al. [36] put forward an effective strat-

egy of iterative training in this area. Hu et al. [24] raised
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Figure 2. The overall architecture of FCA-Net. The green part shows the basic segmentation network with backbone, ASPP, and decoder

modules. The orange part shows the first click attention module. Symbols “⊕” and “↑” mean concatenation and up-sampling operations,

respectively. Consult Sec. 3.1 for more details.

a two-stream fusion network for interactive segmentation.

Jang and Kim [25] offered a backpropagating refinement

scheme to force each interaction point to have the correct

segmentation result. Majumder and Yao [37] made use of

interaction points to generate special guidance maps as in-

put to neural networks according to some other information,

such as superpixel. All these methods have a commonality

that they treat all interaction points indiscriminately in neu-

ral networks. However, we find and propose the uniqueness

of the first point and take it as a special guidance in our

network architecture.

3. Proposed Method

This section contains five parts. In Sec. 3.1, we introduce

our proposed FCA-Net, which treats the first point specially.

In Sec. 3.2, we describe the calculation process of proposed

click loss, which is used to assist our interactive segmenta-

tion network to achieve better performance. In Sec. 3.3, we

explain the structural integrity strategy for postprocessing

the prediction of FCA-Net. In Sec. 3.4, we analyze some

benefits of adopting our first click attention through some

comparative examples. In the end, we will show the imple-

mentation details of our interaction point simulation strate-

gies and the settings of training in Sec. 3.5.

3.1. Network Architecture

The architecture of FCA-Net is shown in Fig. 2. To ex-

plain the validity of the first click better, we do not make

too many changes to the widely-used network structure of

the interactive segmentation. Instead, a simple additional

module called first click attention module is added to the

basic segmentation network. Therefore, FCA-Net can be

split into a basic segmentation network and a first click at-

tention module.

Basic Segmentation Network. Following [25, 30, 31, 37,

47], we employ the common FCN architecture, whose spe-

cific structure is similar to DeepLab v3+ [7]. As shown

in Fig. 2, it contains three parts: a backbone network,

an Atrous Spatial Pyramid Pooling (ASPP) module, and

a decoder module. We take ResNet101 [22] as the back-

bone. We denote the features of the last four stages as

{F1,F2,F3,F4}. To capture multi-scaled objects in in-

teractive segmentation, we also adopt dilated convolutions

on the last stage of ResNet101 instead of taking stride as

2. Thus, output stride of the backbone is 16. The input of

backbone is the RGB image concatenated with two Gaus-

sian maps of annotated positive points and annotated nega-

tive ones. The Gaussian map is calculated according to the

Euclidean distance map, as shown in Fig. 2. The Gaussian

radius in our experiments is set to 10.

For the ASPP module shown in Fig. 2, the input is con-

catenated features (F4 ⊕ FFCA), where ⊕ means the con-

catenation operation and FFCA means the output of the first

click attention module. The concatenated features are fed

into four dilated convolutional layers with different dilation

sizes of 1, 6, 12, 18 and a global average pooling layer. Then

the output features of the five branches are concatenated and

fed into an extra convolutional layer. For the decoder mod-

ule shown in Fig. 2, it takes the low-level features F1 and

the output features of ASPP as input and use convolutional

layers to generate the final prediction result. To supervise

the prediction result, we design a click-based loss function

to replace conventional binary cross entropy loss function.

We call this general click loss, which is detailed in Sec. 3.2.
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First Click Attention Module. For utilizing the guidance

information of the first click, we design a simple module

alongside the basic segmentation network. It takes the low-

level features F1 and the Gaussian map Mf centered on the

first click as input. The concatenated features (F1 ⊕ Mf )

are fed into six 3 × 3 convolution layers. On the first and

fourth layers, we take stride as 2 to reduce the resolution.

The number of channels is 256 in the first three layers, and

512 in the last three ones. Thus, the output features FFCA

are with 512 channels. It will be merged into the basic seg-

mentation network before the ASPP module. In addition,

we supervise the FFCA with a first click loss, which focuses

on these pixels around the first point. We will describe the

details in Sec. 3.2.

To better illustrate the effect of the first click attention,

in Fig. 3, we visualize the predicted probability maps of

the model with FCA (c-d) and without FCA (b). Note that,

in these three tests (b-d), the coordinates of these positive

points are exactly consistent. As can be seen in Fig. 3

(b), in the absence of FCA, the two positive points share

the same importance. By introducing the FCA (c-d), the

model’s attention shifts. In test (c) and (d), the order of the

positive points marked by the user is different. We can see

that no matter where it is, the first click attracts more at-

tention, serving as a segmentation anchor, while the other

points play an auxiliary role for detail repair. Compared

with the equal treatment of interaction points, the introduc-

tion of the FCA makes the model work more in line with

the real interaction behavior of users as discussed in Sec. 1.

3.2. Click Loss

For a better explanation in the following parts, we define

some symbols and operations here. All pixels are repre-

sented as G. We use Gp and Gn to represent the sets of pixels

in foreground and background according to the ground truth

mask. A represents all the annotated points. Ap and An

represent positive points and negative points respectively.

We use d(p1, p2) to represent the Euclidean distance be-

tween point p1 and point p2. And we use φ(p,S) to repre-

sent the shortest distance from one point p to another region

S , which is defined as:

φ (p,S) = min
∀ps∈S

d (p, ps) . (1)

For the task of binary segmentation, we usually use bi-

nary cross entropy (BCE) as a loss function to supervise the

neural network. The loss function is beneficial to focus on

the global segmentation quality. For the interactive segmen-

tation task, we prefer to see that user interactions can play

a guiding role. It is preferable that more accurate results

at and around these interaction points, so we design a loss

function based on user interactions to assist our FCA-Net

with better performance.

(a) (b)

(c) (d)

Figure 3. Visualization of the first click attention. (b) is the pre-

dicted probability map without FCA; (c) and (d) are the predicted

probability maps with FCA acting in different positions.

The click loss can be thought of a kind of weighted bi-

nary cross entropy loss. Conventional binary cross entropy

loss function can be formulated as follows:

ℓ (p) = − (yp log (xp) + (1− yp) log (1− xp)) , (2)

where xp means the probability of point p in prediction

mask and yp means the label of point p in the ground truth

mask (0 or 1).

Firstly, we define a function ψ to represent the distance

weight between a point p and a set of annotated points S
(e.g. Ap and An), which is formulated as follows:

ψ (p,S) = 1−
min (φ (p,S) , τ)

τ
, (3)

where τ is the influence range of each annotated point.

For the loss function to supervise the final prediction, we

propose a loss called general click loss (Lg) which consid-

ers all clicks, which is formulated as follows:

Lg =
1

N

∑

p∈G

(ŵp · ℓ (p)) . (4)

N is the number of all pixels. The weight in Equ. (4) can

be represented as follows:

ŵp =

{
α+ ψ (p,Ap) (β − α) , yp = 1
α+ ψ (p,An) (β − α) , yp = 0

, (5)

where α and β are used to adjust the range of loss.

For the loss function to supervise the output of FCA

module, we use a special loss called first click loss (Lf )

which focuses on the area around the first point. It is for-

mulated as follows:

Lf =
1

N

∑

p∈G

(w̃p · ℓ (p)) . (6)
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The weight in Equ. (6) can be represented as follows:

w̃p = α+ ψ (p, {af}) (β − α) yp, (7)

where af means the first point in Ap.

In experiments, we choose τ at 100, α at 0.8, β at 2.0.

3.3. Structural Integrity Strategy

Through experiments, we find that the prediction masks

of neural networks may contain some scattered regions of

wrong results. In most cases, people will prefer to get the

object mask which maintains structural integrity in the task

of interactive segmentation. Therefore, we propose a strat-

egy to maintain the structural integrity of the segmentation

based on interaction points.

Normally, we take 0.5 as the threshold to get the final

binarized mask from the output of neural networks. Let P
represent these points which are predicted as foreground.

We will postprocess these prediction areas according to the

interaction points and get new P ′, which is formulated as

follows:

P ′ = {p ∈ P|∃a∈Ap
σ(p, a) = 1}, (8)

where σ(p1, p2) = 1 when there is an eight-connected path

from point p1 to point p2. The structural integrity strategy

can work in most cases. The effect of it can be seen in

Tab. 2.

3.4. Strength Analysis

Can the first click attention really improve the quality

of segmentation? In this section, we will illustrate some

benefits of joining the first click supervision by comparing

some visual results in Fig. 4.

Focus Invariance. We know that all positive and negative

points are equally important in most methods. They take all

annotated points as input to generate the final result. These

positive points except the first one are often clicked for re-

pairing local details and may be close to the boundary of

the target object. If the neural network treats these points

equally as the first point, it will often result in a wrong seg-

mentation. For example, in Fig. 4 (a), we want to segment

the table with a white tablecloth. The first click is near the

center of the table. The other positive point is used to fix

errors near the edge of the table. Without the guidance of

the first point, the neural network will mistakenly segment

the person in the image because it treats each point equally.

With the help of our first click attention, there will be fewer

wrong segmentations.

Location Guidance. Obviously, the first point guides the

location of the target object. If there are multiple objects in

(a)

(b)

(c)

Figure 4. Illustration for benefits of first click attention. The left

and right columns show the prediction masks with and without the

FCA module, respectively.

the scene, there will be less error segmentation in local re-

gions with the help of the first point. For example, in Fig. 4

(b), we want to segment the left sheep. We click three neg-

ative points around the right sheep. Without the accurate

understanding of the global location information, the net-

work may be mistaken that there is a target object in the

area surrounded by these negative points. This may cause

some errors, such as the wrong prediction of the right sheep.

With the first click attention, the prediction will focus on the

location of the first click and get a better result.

Error-Tolerant Ability. In the process of interactive seg-

mentation, it is inevitable that there will be some click er-

rors, especially at the edge of the object or in the area where

the background is similar to the foreground. For example,

in Fig. 4 (c), we want to segment the penguin. A positive

point on the right near the boundary of the target object ac-

cidentally falls into the background area. We can see that

this may cause serious segmentation errors, as shown in the

right one of Fig. 4 (c) if we do not use the first click atten-

tion. With the guidance of the first point, the influence of

these error points will be greatly reduced.

3.5. Implementation Details

In this section, we will show some details on the training.

Since user-annotations are unavailable in those segmenta-

tion datasets, we turn to take some strategies to simulate

various interaction points as done in most papers, including
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general clicks and the first click. We will also introduce our

training settings in this section.

General Click Simulation. For most clicks, we use the

strategy similar to that in [47]. The numbers of clicks in

the foreground and background are determined randomly

within [1, 10] and [0, 10], respectively. For positive points,

they are chosen on the foreground, at least P1 pixels away

from the object boundaries and P2 pixels from each other.

We define A∗ as the set of these previous annotated points.

A new positive point is selected from a candidate set Cp,

which can be expressed as follows:

Cp = {p ∈ Gp|φ(p,Gn) > P1, φ(p,A
∗) > P2}. (9)

For negative points, they are chosen in the background,

N1 ∼ N2 pixels away from the object boundaries and N3

pixels from each other. A new negative point is selected

from a candidate set Cn, which can be expressed as follows:

Cn={p ∈ Gn|φ(p,Gp)∈(N1, N2) , φ(p,A
∗)>N3}. (10)

In our experiments, we choose P1 in {5, 10, 15, 20}, P2

in {7, 10, 20}, N1 in {15, 40, 60}, N2 in {80}, N3 in

{10, 15, 25}.

First Click Simulation. The first click is always on the

target object, and it is usually close to the object center. We

thus use E(p) (called CD in Tab. 1) to express the distance

between the point p and the object center, which is formu-

lated as follows:

E(p) =
φ (p,Gn)

max∀p0∈Gp
φ (p0,Gn)

. (11)

Here E(p) closer to 1 means that the first click point locates

at a more central position of the object. In our experiments,

we choose the point whose E(p) equals 1 in cropped train-

ing images as the first point. The Gaussian radius of it is set

to three times that of general points.

Training Settings. We train the FCA-Net on 10582 train-

ing images of the augmented dataset (PASCAL VOC [13]

+ SBD [20]) which excludes the validation images of PAS-

CAL VOC dataset. Actually, we can get 25832 instance-

level images and corresponding masks for training. The in-

put image is proportionally resized with its smaller side fix-

ing to 512 pixels. Then, we take a random crop with 512 ×
512 pixels guaranteeing that the cropped image contains at

least a part of the object. We take the same iterative training

strategy [36, 37] for clicks simulation. We take ResNet101

pre-trained on ImageNet [12] as a backbone. We set the

batch size to 8. We set the initial learning rate to 0.007 for

ResNet and 0.07 for other parts and take stochastic gradi-

ent descent with 0.9 momentum for optimization. We adopt

the polynomial learning rate decay for 30 epochs and con-

stant learning rate for additional 3 epochs in the end. All the

experiments are implemented with the PyTorch [41] frame-

work and run on a single NVIDIA Titan XP GPU.

4. Experiments

4.1. Evaluation Details

Datasets. We adopt the following widely used datasets for

evaluation:

• GrabCut [43]: The dataset contains 50 images and

is used in most methods for interactive segmentation.

Most of the images have obvious differences between

foreground and background.

• Berkeley [39]: The dataset contains 100 object masks

on 96 images. There are some images that are difficult

to segment in this dataset because of similar appear-

ances in foreground and background.

• PASCAL VOC [13]: We use the validation set in

this dataset which contains 1449 images with 3427

instances. Thus, we take these instance-level object

masks for validation. These objects are semantically

consistent with the data used for training.

• MSCOCO [32]: The dataset contains objects of 80

categories. We divide this dataset into MSCOCO

(seen) and MSCOCO (unseen) and sample 10 images

per category for evaluation as done in [31, 47].

• DAVIS [42]: The dataset is for video object segmenta-

tion. It contains 50 videos whose ground truth masks

are of high quality. We sample the same 10% frames

as [25] for evaluation.

Metrics. Following [24, 25, 30, 31, 36, 37, 47], we em-

ploy the Mean Intersection Over Union (mIoU) as a metric.

We also take a robot user to simulate clicks in the evalua-

tion. Specifically, the first point will undoubtedly be a pos-

itive point to guide the segmenting of the target object. We

will get a prediction mask based on annotated points. Then

the next point will be placed in the center of the largest er-

ror region. We plot the curves of the mIoU and the number

of clicks for comparing the performance of each method

on the fixed interactions. We adopt the Mean Number Of

Clicks (mNoC) as an evaluation metric, which reflects the

average interactions for obtaining a certain IoU threshold on

each sample of a dataset. The selection of IoU thresholds is

different for each dataset and the default maximum number

of clicks is limited to 20 for each sample. These settings

above are consistent with the previous works.
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(a) GrabCut
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(b) Berkeley
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(c) PASCAL VOC
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(d) DAVIS
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(e) MSCOCO (seen)

0 2 4 6 8 10 12 14 16 18 20
Number of clicks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
Io

U 
sc

or
e RW

GC
GM
ESC
GSC
GRC
DOS
RIS
Ours

(f) MSCOCO (unseen)

Figure 5. The number of clicks vs. mean IoU (NoC-mIoU) curves of our FCA-Net and other 10 methods on 6 sets of 5 datasets.

Method
GrabCut Berkeley PASCAL VOC DAVIS MSCOCO MSCOCO

@90% @90% @85% @90% (seen)@85% (unseen)@85%

GC [6]ICCV 01 11.10 14.33 15.06 17.41 18.67 17.80

GRC [45]POG05 16.74 18.25 14.56 N/A 17.40 17.34

RW [18]PAMI06 12.30 14.02 11.37 18.31 13.91 11.53

GM [3]IJCV 09 12.44 15.96 14.75 19.50 17.32 14.86

ESC [19]CV PR10 8.52 12.11 11.79 17.70 13.90 11.63

GSC [19]CV PR10 8.38 12.57 11.73 17.52 14.37 12.45

DOS [47]CV PR16 6.04 8.65 6.88 12.58 8.31 7.82

RIS [31]ICCV 17 5.00 6.03 5.12 N/A 5.98 6.44

LD [30]CV PR18 4.79 N/A N/A 9.57 N/A N/A

BRS [25]CV PR19 3.60 5.08 N/A 8.24 N/A N/A

CMG [37]CV PR19 3.58 5.60 3.62 N/A 5.40 6.10

FCA-Net 2.24 4.23 2.98 8.05 4.49 5.54

FCA-Net (SIS) 2.14 4.19 2.96 7.90 4.45 5.33

FCA-Net* 2.16 3.92 2.79 7.64 4.34 5.36

FCA-Net* (SIS) 2.08 3.92 2.69 7.57 4.08 5.01

Table 2. Comparison of the mean number of clicks (mNoC) on 6 sets over 5 datasets. SIS means the proposed structural integrity strategy

for post-process. FCA-Net* indicates our model with Res2Net [16] as a backbone.

Inference Time. We test the inference speed on the Intel

i7-8700K 3.70GHz CPU and a single NVIDIA Titan XP

GPU. It takes about 0.07 second for each click on a 512 ×
512 image. The speed is fast enough to meet the needs of

real-time interaction.

4.2. Comparison with the StateoftheArt

We compare our results with other existing methods, in-

cluding graph cut (GC) [6], growcut (GRC) [45], random

walk (RW) [18], geodesic matting (GM) [3], Euclidean star

convexity (ESC) [19], geodesic star convexity (GSC) [19],
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# FCANet PASCAL Berkeley

1 BS 4.21 5.74

2 BS + FCA 3.66 5.22

3 BS + FCA + CL 3.33 4.94

4 BS + FCA + CL + Iter 2.98 4.23

5 BS2 + FCA + CL + Iter 2.79 3.92

Table 3. Ablation study of proposed methods. BS: baseline; BS2:

baseline implemented by Res2Net; FCA: first click attention mod-

ule; CL: click loss; Iter: iterative training.

deep object selection (DOS) [47], regional image seg-

mentation (RIS) [31], latent diversity based segmentation

(LD) [30], backpropagating refinement scheme (BRS) [25],

and content-aware multi-level guidance (CMG) [37]. Some

scores are from [25, 30, 31, 47].

Fig. 5 illustrates the mIoU of each method on the differ-

ent number of clicks. The curves of FCA-Net are plotted

on the results without structural integrity strategy for post-

process. We can see that the curves of our method are su-

perior to other methods after the first point in most cases.

This is in line with our expectations. With the first point

as the main body and location guidance, the prediction of

neural networks will contain fewer error regions. Thus, the

FCA-Net can produce more accurate results.

Tab. 2 shows the mNoC metric on six sets of five

datasets. Our FCA-Net reaches the state-of-the-art in five

datasets. With a structural integrity strategy to postprocess

the result, the performance will be further improved. We do

not make too many changes on the network architecture and

just set up a simple first click attention module. However,

the improvement of performance is significant, which also

indirectly reflects the unique validity of the first point.

4.3. Ablation Study

To further verify our contributions, we conduct ablation

study on the validation set of PASCAL VOC and Berke-

ley. We take the basic segmentation network as the baseline

(No.1), and gradually equip the strategies mentioned in this

paper (No.2-5). The ablated results of the mean number

of clicks (mNoC) are shown in Tab. 3. Comparing No.2

with the baseline, adding the FCA module, we find that the

performance is dramatically improved with 0.55 and 0.52

alleviating of mNoC. This improvement is in line with our

expectation that the guidance information of the first click

is utilized more effectively by introducing the FCA. Com-

paring No.3 with No.2, we see that the click loss proposed

in this paper brings a considerable effect improvement. We

also employ the same iterative training strategy [36, 37],

which improves the effect of the final model to a certain ex-

tent. Since the proposed FCA-Net is only a simple imple-

mentation to explore the critical role of the first click, we

do not modify the widely-used framework too much; thus,

(a) (b) (c)

Figure 6. Illustration the possible limitations of the proposed FCA-

Net. Points with green ring represent the first click.

in practice, we can get better results by replacing stronger

backbones or more sophisticated designs. For instance, in

No.5, we take Res2Net [16] to replace ResNet as the back-

bone, which further improves the accuracy. Finally, we use

the proposed structural integrity strategy to postprocess re-

sults and show its reliable improvements in Tab. 2.

4.4. Limitation Analysis

In this section, we discuss the possible limitations of our

FCA-Net in some special cases. As shown in Fig. 6 (a), due

to the strong location prior provided by the first click, our

FCA-Net is not good at segmenting multiple instances in an

image at the same time. Fortunately, in real-world applica-

tions, the limitation can be alleviated by annotating for each

instance object with its own first click. In the Fig. 6 (b-c),

we show two interesting scenes, where the center of these

instances may not be clicked by users due to the structure or

occlusion. In these cases, the locating guidance may devi-

ate from the center. It will sometimes lead to unsatisfactory

segmentation results, for which the users have to add more

points for repairing.

5. Conclusions

In this paper, we explore and demonstrate the importance

of the first click for interactive segmentation. We propose

a FCA-Net, which adds a simple module on the basic seg-

mentation network to shift more attention to the first click.

We also raise an effective click-based loss function for our

FCA-Net and a new strategy to maintain the integrity of

prediction masks. The state-of-the-art performances over

5 datasets show the importance of the first click and superi-

ority of our methods.

Acknowledgements

This research was supported by Major Project for New

Generation of AI under Grant No. 2018AAA0100400,

NSFC (61922046, 61972216), the national youth talent

support program, and Tianjin Natural Science Foundation

(17JCJQJC43700, 18JCYBJC41300). Shao-Ping Lu is the

corresponding author of the paper.

13346



References

[1] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Ef-

ficient interactive annotation of segmentation datasets with

polygon-rnn++. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 859–868, 2018. 2

[2] Junjie Bai and Xiaodong Wu. Error-tolerant scribbles based

interactive image segmentation. In IEEE Conf. Comput. Vis.

Pattern Recog., pages 392–399, 2014. 1, 2

[3] Xue Bai and Guillermo Sapiro. Geodesic matting: A frame-

work for fast interactive image and video segmentation and

matting. Int. J. Comput. Vis., 82(2):113–132, 2009. 2, 7

[4] Ali Borji, Ming-Ming Cheng, Qibin Hou, Huaizu Jiang, and

Jia Li. Salient object detection: A survey. Computational

Visual Media, pages 1–34, 2014. 1

[5] Yuri Boykov and Vladimir Kolmogorov. An experimental

comparison of min-cut/max-flow algorithms for energy min-

imization in vision. IEEE Trans. Pattern Anal. Mach. Intell.,

26(9):1124–1137, 2004. 2

[6] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for op-

timal boundary & region segmentation of objects in nd im-

ages. In Int. Conf. Comput. Vis., volume 1, pages 105–112.

IEEE, 2001. 1, 2, 7

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Eur. Conf. Comput. Vis., pages 801–818, 2018. 3

[8] Ming-Ming Cheng, Qi-Bin Hou, Song-Hai Zhang, and

Paul L. Rosin. Intelligent visual media processing: When

graphics meets vision. Journal of Computer Science and

Technology, 32(1):110–121, 2017. 1

[9] Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip

H. S. Torr, and Shi-Min Hu. Global contrast based salient

region detection. IEEE TPAMI, 37(3):569–582, 2015. 1

[10] Ming-Ming Cheng, Victor A Prisacariu, Shuai Zheng, Philip

H. S. Torr, and Carsten Rother. Densecut: Densely con-

nected crfs for realtime grabcut. Comput. Graph. Forum,

34(7):193–201, 2015. 1

[11] Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra, Xiaolei

Huang, and Shi-Min Hu. Repfinder: Finding approximately

repeated scene elements for image editing. ACM Trans.

Graph., 29(4):83:1–8, 2010. 1

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conf. Comput. Vis. Pattern Recog., pages

248–255. Ieee, 2009. 6

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. Int. J. Comput. Vis., 88(2):303–338,

2010. 2, 6

[14] Deng-Ping Fan, Ming-Ming Cheng, Jiang-Jiang Liu, Shang-

Hua Gao, Qibin Hou, and Ali Borji. Salient objects in clutter:

Bringing salient object detection to the foreground. In Eur.

Conf. Comput. Vis., pages 186–202, 2018. 1

[15] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng,

Jianbing Shen, and Ling Shao. Camouflaged object detec-

tion. In IEEE Conf. Comput. Vis. Pattern Recog., 2020. 1
[16] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu

Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A

new multi-scale backbone architecture. IEEE Trans. Pattern

Anal. Mach. Intell., 2020. 7, 8

[17] Shiming Ge, Xin Jin, Qiting Ye, Zhao Luo, and Qiang Li.

Image editing by object-aware optimal boundary searching

and mixed-domain composition. Computational Visual Me-

dia, 4(1):71–82, 2018. 1

[18] Leo Grady. Random walks for image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 28(11):1768–1783, 2006.

2, 7

[19] Varun Gulshan, Carsten Rother, Antonio Criminisi, Andrew

Blake, and Andrew Zisserman. Geodesic star convexity for

interactive image segmentation. In IEEE Conf. Comput. Vis.

Pattern Recog., pages 3129–3136. IEEE, 2010. 2, 7

[20] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
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