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Multiview Conversion of 2D Cartoon Images

SHAO-PING LU, S1BO FENG, BEEREND CEULEMANS, MIAO WANG, RUI
ZHONG, AND ADRIAN MUNTEANU*

Multiview images offer great potential for immersive autostereoscopic
displays due to the multiple perspectives of a dynamic 3D scene that
can be simultaneously presented to a viewer. Traditional 2D cartoons do
not contain depth information, and their painting styles are usually quite
different from those of real images captured from the real world. This
makes existing 2D-to-3D conversion techniques inapplicable because of
the difficulty on geometry recovery or lack of sufficient data. This paper
introduces an interactive multiview conversion scheme from a single 2D
cartoon image. The proposed approach mainly consists of depth assign-
ment and view synthesis. An interactive depth assignment approach is
proposed to treat a cartoon image as a composition of ordered depth lay-
ers, and the depth can be easily assigned to these layers. A depth smooth-
ing procedure is introduced by solving a Laplace equation with boundary
conditions and further depth refinement is performed in order to produce
a complete version of the depth map. An interactive image inpainting
method is finally proposed to perform multiview image synthesis. The
experimental results demonstrate the effectiveness and efficiency of the
proposed approach.

1. Introduction

With decades of rapid development of animation industry and research in the fields
of computer graphics and image processing, nowadays, the presentation of car-
toon becomes more and more diversified. People are no longer accustomed to the
classical hand-painted animation. Recent cartoons, like ”Frozen”, ”Zootopia” and
”Kung Fu Panda”, use highly detailed 3D-models, textures and lighting effects to
render beautiful 3D animations. Such 3D-oriented cartoons, although asking for
extremely heavy investments of artistic creation and computing workloads, can
be easily transformed into stereoscopic or multiview styles for various immersive
applications. In contrast to these modern cartoon production methodologies, con-
ventional cartoons were created following a traditional 2D flat production style. In
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this context, 2D-to-3D cartoon conversion becomes of crucial importance in order
to enable the use of conventional 2D cartoons in immersive applications and 3D
animation.

Multiview cartoon generation from 2D cartoon images aims at providing an
immersive perception of depth by presenting the audience with multiple view
points of the same scene. In this work, the main technical challenges are 2D image-
based depth reconstruction and scene texture synthesis. Although the former has
been extensively investigated in the last decades, accurate depth estimation from
a single image is still an open problem. Furthermore, this problem is particularly
challenging for cartoon images as the textures are often overly simplified. More-
over, the monocular cues in traditional cartoons are not as precise as those in
images captured by cameras. Conventional 2D pictures are acquired under dif-
ferent lighting conditions, while in cartoons artists need different expression tech-
niques to display various art effects.

Although several advanced learning-based techniques have shown significant
capabilities in various image processing domains [S]], applying machine learning
methods in this context is prohibited by the lack of a sufficiently large training
dataset. Such a dataset is difficult to be collected as a huge number of cartoons
with consistent artistic styles is required.

A second challenge involves the rendering of multiple views (new perspective
images) using rendering techniques based on the generated depth map/3D model
and original 2D image. Due to the fact that new virtual images do not contain the
information occluded in the original scene, inpainting (hole-filling) with consis-
tent textures is also particularly difficult when using existing image completion
methods [26]. Depth image based rendering (DIBR) methods [18] may also be
used for 2D-to-3D conversion, but currently they are only suitable for binocu-
lar applications whose disparities between the original and virtual views are rela-
tively small [[12]]; furthermore, these methods may incur additional artifacts when
inpainting large holes in the generated virtual views.

In this paper, we propose an efficient semi-automatic method to generate 3D
views from 2D cartoon images. In the proposed approach, both depth assignment
and image inpainting work with user interactions. Instead of assigning absolute
depth values to the original image, the proposed interactive depth assignment algo-
rithm employs a novel processing paradigm whereby (i) the input cartoon image
is treated as a composition of several depth layers which can be sorted by user
interactions, and (i7) depth values are assigned to the corresponding layers accord-
ing to human perception. An interactive inpainting method is also proposed to
fill-in the disocculusion holes in the generated virtual views. Subsequently, the
proposed approach can successfully propagate texture and structure to the missing
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areas (holes) only with a few interactive user scribbles, providing enhanced 3D
perception compared to the previous approaches.

In summary, the main contribution of this paper is that we introduce an entire
framework for multiview conversion from a single 2D cartoon image. The pro-
posed approach involves depth reconstructions and view synthesis, and requires
only very simple user interactions. Our interactive solution can easily avoid var-
ious artifacts that are difficult to handle in fully automatic 2D-to-3D conversion
methods.

2. Related Work

Our work includes three major technical components: image segmentation, depth
assignment and multiview synthesis. We thus provide a brief overview of related
work in each area. The state-of-the-art on 2D to 3D conversion will also be reviewed.

Image segmentation. Image segmentation is a fundamental research topic in
computer vision, computer graphics and multimedia processing. Existing segmen-
tation algorithms can be classified in terms of low-level grouping or high-level
semantic segmentation, hard partitioning or soft matting, automatic or interactive
segmentation, etc. [55)]. Many automatic segmentation algorithms are based on
graphs [19,/48]] and gradient ascent modeling [[14]. The Turbopixel-based approach
[33}136] partitions the image using geometric flows, depending on the local image
gradients to distribute superpixels regularly on the image plane. Interactive seg-
mentation can be seen as part of seeded region-growing family of algorithms [1],
where connected pixels with similar colors are grouped to generate relevant areas
for further user interaction. The binary partition tree algorithm [46] performs a
hierarchical region segmentation for object-background segmentation. The well-
known graph cut algorithm in [[7] and its iterative improvement [45]] solve the opti-
mization problem using the max-flow/min-cut algorithm. Object-level segmenta-
tion for cartoon video tracking is also studied in [63]. With the recent advances
in deep learning, segmentation based on convolutional neural networks (CNN)
[S]] proved their potential, although collection of training data in our application
domains is difficult.

Depth assignment. Accurate depth reconstruction is still an open issue even
with RGB-D sensors in indoor scenes [[13]]. Here we briefly review existing depth
generation methods from a monocular image. There are various automatic depth
estimation methods using learning-based or gestalt-based approaches. Saxena et
al. [47] learn single static image’s 3D scene structure and infer orientation using
a Markov Random Field (MRF). The method presented in [35] infers the image
depth from predicted semantic labels. In [62] trapped-ball segmentation is pro-
posed to distinguish layers for cartoon video vectorization. Hoiem et al. [24] recover
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an image’s occlusion boundaries based on a Bayesian model which is trained on
representative training data. In general, learning-based depth estimation strongly
depends on the given dataset and segmentation technologies. One representative
gestalt-based approach is given in [2], where the region boundaries obtained from
segmentation are treated as visual cues for occlusion and are used to estimate the
layers in the scene. The approaches in [9} 43| further combine image segmentation
and hierarchical representations to perform monocular depth ordering.

Interactive Depth Estimation approaches like [58]] allow the user to directly
assign depth. These methods are tedious and inefficient even with the help of tai-
lored editing tools[42]] or geometric constraints[25]]. Some approaches like [34}54]]
can produce 3D models if some geometric constraints meet some specific require-
ments and objects in the image consist of planar surfaces. In [20]], contours are used
to generate “artistic blobby objects” with inaccurate absolute depth values. Wang
et al. [577]] allow the user to directly paint depth on an image through sparse scrib-
bles, and the generated depth cues are processed as soft constraints to propagate
to the rest of regions. The method in [60] provides a similar solution to estimate
depth using transfusive image manipulation. Sykora et al. [S1] propose a method
to efficiently generate depth maps for a cartoon image by making use of an opti-
mization framework that mimics the way a human reconstructs depth information
from a single image. In [37]] the authors create a similar framework by solving a
Laplace equation. lizuka et al. [28] further reduce the computational burden by
simply applying superpixel segmentation for depth propagation.

Multiview synthesis. The view synthesis problem and related editing top-
ics have been well-studied in last decades [26, 44, 49, 64]; interested readers
are referred to the survey in [4]. Multiview synthesis takes a texture and depth
images as input and generates the textures corresponding to different perspectives.
The movement of the virtual camera position with respect to the single reference
uncovers parts of the scene that are not present in the reference texture. To render
a high-quality image, it is important to complete these missing texture regions —
disocclusions — in a plausible manner. This is also referred to as Depth-Image-
Based Rendering (DIBR). The state of the art in the area includes the method
of Daribo et. al. [16] which uses depth information and adapts Criminisi’s algo-
rithm for disocclusion inpainting [15]]. The well-known Patchmatch algorithm [3]]
has been extended to multiview inpainting [39]], and further accelerated by taking
depth information into account [38]]. In [52f], the authors propose to consistently
compose and edit stereoscopic images. In [12], a MRF model of overlapping image
patches is used to compute an inpainting result which minimizes the MRF energy.
Mu et al. [41] further perform view completion and depth recovery simultaneously.
Interested readers can refer to [40] on recent multiview synthesis and editing tech-
niques.
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Figure 1: The proposed multiview conversion framework of a 2D cartoon image.

2D-to-3D Conversion. 3D content generation from 2D images has been exten-
sively studied in the context of film-making using 3D scene modeling for single
view (2D) or stereoscopic (3D) rendering. Some special applications such as sports
live broadcasts, need a real-time 2D to 3D conversion, so automatic 3D conversion
is preferable. One example can be seen in [[10], where the authors exploit monocu-
lar depth-cues using colors, gradients and motion [31]], which makes the algorithm
heavily dependent on the scene complexity. Kiana et al. 8] generate stereoscopic
3D (S3D) soccer video based on a domain-specific dataset. Good depth estimation
can be also achieved by applying semantic labelling during a learning procedure
[35]. However, these methods are still far from practice. Semi-automatic conver-
sion can generate better results than these automatic approaches by relying on user
interactions; this, of course, makes it difficult to handle 2D videos in real-time.

Other approaches focus on interactively applying depth estimation for the key
frames in a video. By doing so, Varekamp et al. [S3]] use bilateral filtering and
motion compensation to propagate annotated depth to other frames in the video
sequence. An object segmentation algorithm is used in [11] to the generate dis-
parity maps for the key-frames. Wu et al.[S9] propagate the depth by tracking the
objects in non-key frames via a bi-directional Kanade-LucasTomashi (KLT) opti-
cal flow estimation algorithm. A more recent method [27] calculates depth based
on a Bayesian framework and uses a Natural Scene Statistics (NSS) model to guide
depth propagation. These luminance-based depth propagation methods are unsuit-
able for our 3D cartoon conversion, since traditional cartoons do not have photo-
realistic luminance information as in a real environment.
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Figure 2: Cartoon image pre-segmentation. Left: input image. Middle: user inter-
action with few scribbles. Right: segmented result.

3. Proposed solution

Fig. [T] shows the overall framework of the proposed multiview cartoon conver-
sion method. Our approach consists of three parts: 1) interactive depth assign-
ment, 2) view warping , and 3) view synthesis by interactive inpainting. Our sys-
tem introduces an effective multiview generation workflow exploiting simple user
interactions for both depth estimation and view synthesis. Unlike the approach in
[37], the proposed method allows for interactive user inputs where the user can
improve the synthesis result at every stage, getting visual feedback in real-time.
The depth assignment process in is improved and it becomes more applicable
for multiview generation. The proposed interactive approach can easily propagate
the expected texture and structure information to the missing areas (i.e. holes gen-
erated by view warping).

3.1. Interactive depth assignment

Most traditional 2D cartoons, such as "Tom and Jerry” and "Mickey Mouse”, are
initially hand-made drawings which delineate objects and characters with black
contour lines. Colors within a single entity are mostly similar, and textures of car-
toons are much simpler than those of real-life photographs. In order to efficiently
extract the objects and background regions, we build a depth map starting from
a few scribbles which are propagated using a pre-segmentation and by solving a
Laplace equation.

Pre-segmentation and coarse depth assignment. We first achieve multi-
label pre-segmentation using [50], which uses graph-cuts [6] to find a consis-
tent labeling based on initial user scribbles, pixel intensities and a Potts-model.
This results in a coarse segmentation of the texture image. In order obtain a depth
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map, the segments should be assigned depth values, respecting the existing fore-
ground/background relations. We follow the method introduced in [30,50] to solve
this ordering problem. That is, each pre-segmented region in the image is treated as
a node (vertex), and the directed edge between two nodes is defined by user inter-
actions. The user draws lines to indicate the expected relative depth relationship
between adjacent regions. After completing the interactions, all pre-segmented
regions are sorted in a order using topological sorting [30]. If the graph which
results from the user interactions is not acyclic, a topological sorting is not achiev-
able. This situation would however also not be plausible and can easily be detected
so it can be prompted to the user. Fig. [3] shows how the user specifies the relation-
ship between layers. After that, the user can assign the specific depth values to the
sorted layers. To do so, linear interpolation is used to assign desired depth values
to those sorted layers [51]. We note that linear interpolation in [S1]] can be used for
2.5D cartoon pop-up, but it is unsuitable for multiview generation, because those
pre-segmented layers are seldom positioned linearly in an image. As shown in Fig.
each defined line (white arrow) has a distance r; where index ¢ indicates the
order of layers. Then the depth d; for layer ¢ is formulated as

N—
D — 1
(1) dz _ Dmax _ Pmaxz — Pmin mzn j : ?
—o ¢

where D, is the maximum depth value of all foreground layers that correspond
to the first layer (object closest to audience), while D,,;,, is the minimum depth
value of the last layer (the furthest background). D)., and D,,;,, which are
defined by the user, should satisfy the conditions: 1 < D00 < 255, 1 < Dy <
255 and Dy < Dipaz- N is the total number of directed edges which is equal to
the total number of layers. It is easy to notice that depth assignment has a inverse
relationship with the distance . This approach is more appropriate than linear
interpolation, since the depth can be assigned based on the relative position of
objects defined by the user.

Depth refinement. Once the coarse depth map of the cartoon image is gener-
ated, more detailed depth transition between different layers should be considered.
Similar to the approach introduced in [28, [51]], we smooth transitions of depth
whilst preserving the depth discontinuities. To achieve this, a contour-preserving
smoothing method is proposed to refine the coarse depth map, and it can be for-
mulated as the following quadratic problem:

2) Ljeptn, = arg mln Z Z Qpg(zp — 29)7,

fm
Y €T imp €N,
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Figure 3: Layers sorting. Left: pre-segmented layers and sorting by user interac-
tion. Right: the sorted result with desired depth information.

where x is the unknown smoothed depth value. Zy,,, denotes the coarse depth
map obtained from d; in Eq. E x, and x4 represent the pixels’ depth values from
Zimp- Pixel g belongs to the 4-connected neighboring pixels of pixel p. 2, is the
weighting function used to achieve depth transitions:

3)

e PT=Ta® if d, # 0
qu = .
0 otherwise.

The weights €,,, are computed from image gradients in the original texture image
7. The parameter ) is used to control the degree of smoothness. /3 is a constant
(8 = 150 by default) deciding how much the gradients will influence the depth
transition. When d,, = 0, the weighting function €2,,, = 0, since the black contours
in the coarse depth map will not participate in the smoothing procedure. For the
regions where (2,,, is non-zero, depth will be smoothed out based on image gradi-
ents from original image. The corresponding homogeneous regions in the original
image will be better smoothed so that some geometrical relationship will be pro-
tected in the final depth map.

However, the gradient information from the original image is a double-edged
sword, since it maintains the objects’ geometries but prevents depth propagation
and it introduces discontinuities in the depth maps. This problem will be addressed
in the next step.

To minimize the energy function in Eq. 2} the following Laplace equation
needs to be solved:

4) Vir =0
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Figure 4: Coarse depth refinement with gradient information. In left column, the
original image at the top provides gradient information and the coarse depth map
at the bottom provides each layer’s depth information. Image in the right column
shows the smoothed result.

with the Dirichlet and Neumann boundary conditions, respectively:

Dirichlet : x, = d, if p € Limp
Neumann : x, —x,=0 if (d, #dg) N (dp #0).

The Dirichlet boundary condition can be interpreted as the meaning that pixels aim
to maintain their initial depth (the coarse depth map Zy,,,;,) as much as possible. The
Neumann boundary is a higher order condition that makes depth values transit in
the regions where the area does not contain contours (d, # 0). Then the Laplace
equation (@) becomes:

(5) M-X=pu-D

where M is a n x n Laplace matrix and n is the number of pixels in original
image. X is a unknown column vector indicating the smoothed depth values and
D is the vector given by coarse depth map. p is a constant used for controlling the
smoothness of the depth map.

Up to now, the regions covered by contours are not taken into account as they
were used to preserve depth discontinuities (see one example in Fig. d). Thus,
depth has to be expanded to the contours. Traditional methods perform depth
expansion by eroding the regions based on the order of depth layers. However,
this is only applicable for thin contours. An improved method [51] consecutively
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Figure 5: Depth expansion to contours. From left to right: contour mask; normal-
ized distance map; depth map to be expanded to contours; expansion result.

Figure 6: Interactive contour refinement. A: Strokes made by the user. B: Coarse
depth map. C: refined depth map.

expands depth in a front-to-back order (obtained from sorting), which can success-
fully solve the expansion problem that is mentioned in the first case. But its solu-
tion is not efficient, since the depth expansion needs to solve another Laplace equa-
tion for each depth layer. Furthermore, the user needs to choose suitable thresholds
for each depth expansion.

In this work, we introduce a simple interactive approach consisting of the fol-
lowing two phases: 1) coarse depth expansion and 2) contour refinement. First, a
binary mask is created for contours and then the distance transform of a contour
mask is computed based on

(6) dp = \/(xp - mq)Q + (yp - yq)Q,

where d,, denotes the Euclidean distance between the pixels p and its nearest non-
zero pixel q.

As shown in Fig. [5] once the distance map is obtained, the depth in contours
are given by their closet pixels in the depth map. With this efficient approach, our
depth expansion only can be instantly achieved even for a HD resolution image.

Finally, due to possible errors introduced in the coarse depth propagation, user
interaction can be involved in the contour refinement. As shown in Fig. [6] the user
can directly draw on the specified depth maps and the contours covered by strokes
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will get the same depth value as the pixel where the stroke covers. Consequently,
all these changes will be added to the coarse result to generate a complete depth
map. Next, we are going to generate multiview images by making full use of the
original image and its associated depth map.

3.2. Interactive depth-based view synthesis

The multiview generation introduced in this paper is applied to extrapolate multi-
ple viewpoints from a single texture image [23l]. As shown in the Fig. /| numerous
missing holes exist in the new image of the target viewpoint by view warping. One
single discrete image cannot contain the complete 3D information to fully generate
a new perspective view. Moreover, the depth map generated by the aforementioned
depth assignment method may be inaccurate. Thus, inpainting is usually utilized
to complete the virtual texture images.

As can be seen again in Fig. [/ the generated holes can be roughly classified
into two categories: small cracks and disocclusion holes. Small cracks are usu-
ally several pixels wide, but disocclusion areas are caused by depth discontinuities
whereby the involved pixels have different disparities. Small cracks can be easily
removed by using median filtering followed by morphological filters: erosion and
dilation. Erosion is used to fix the small holes and dilation is applied to compensate
the eroded disocclusion areas.

Next we employ a depth-based pixel-level inpainting algorithm [39] to fill the
remaining holes. Moreover, we further introduce interactive constraints to achieve
a more robust inpainting result. Similar to exemplar-based approaches, the pixel-
level inpainting fills the missing holes based on the known regions Zj:

@) Iy =1 — 1y,

where 7 is the warped image and Zj is a mask denoting the hole areas. Then,
the problem is how to find an optimal candidate from the known region to fill
missing pixels. Firstly, the similarity between a patch from the known region and
a patch centered on the hole boundary (pixel m € 0Zp) is computed. The optimal
candidate P,,; should satisfy:

(8) Py = arg min E(Pp,, Pr),

nely

where P, is an optional patch from known regions and P,, is the patch on the hole
boundary. E' is a similarity metric; in our case the Sum of Squared Differences
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Figure 7: Different holes by view warping. Left: warped image. Middle: hole
classes with different colors. Right: small crack filling result.

(SSD):

1

9 E<Pmapn) = Niu

pm - ,Pn‘ ’27
where IV, is the total number of known pixels within the patch P,,.

Our dissoclussion inpainting solution is initialized by randomly selecting can-
didates from Zj, to fill-in the pixels in missing holes Z;; we then search the can-
didates (patches) throughout the known regions and calculate the corresponding
similarity metric; finally, we iteratively update the optimal patch with minimum
E to fill the hole’s boundary. It is easy to imagine that the procedure of searching
candidates throughout the known regions is very time-consuming. In order to find
the optimal candidate more efficient and avoid trapping in the local minimum of
similarity metric F, a logarithm search strategy is applied

(10) Cn= |J @+aR;y +airRy)
(4,3),(¢",3")

where C,,, is the set of candidates for the hole at pixel m. (z/, y/) is the coordi-
nate of center pixel for current optimal patch from Z. R = [—1,0, 1] represents
the searching direction and o = [64, 32, 16, 8,4, 2, 1, 0] decreasing exponentially
indicate the searching radius.

This pixel-level inpainting algorithm can work iteratively since once all pixels
on boundary 07, are filled by their best candidates, their neighbor pixels belong-
ing to Z,, will be treated as the updated 0Z;, that will be put in the filling queue.
Moreover, we further limit the search space of the disoculusion areas to the known
background regions and all specified areas drawn by the user. Thus, the search
space is defined as:

(11) S =35z7,()Sp,
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)

2

Figure 8: View synthesis by interactive inpainting. Red pixels are to be disocu-
luded areas; green lines are used to specify search space by the user.

where Sz, denotes that the search space in the known regions. Sp is defined as

(12) Sp= |J {(Dm) < thnaz) N (D(m) > tmin)} -

mESIk

D(m) is the depth value at pixel m. 4, is the maximum depth of the regions
covered by user strokes and y;,, 1 the corresponding minimum depth.

Finally, as shown in the example in Fig. [8] the user can easily draw strokes to
define the filling regions and specify some search areas for hole filling.

4. Experiments and Discussion
4.1. System implementation and parameters

The proposed multiview cartoon conversion solution is implemented in C++. Addi-
tionally, we configured the Laplace matrix solver by using the MATLAB graph
analysis toolbox [22]. All the calculations are done in CIE Lab color space. The
whole procedure processing a 512 x 512 image takes less than 10 minutes for
a skilled user on a laptop with 2.5GHz Quad-Core Intel i7-4710MQ CPU, 8GB
memory and NVIDIA GTX860M GPU. In general, the proposed system allows
the user to achieve real-time interaction for both depth assignment and virtual view
synthesis on a HD resolution cartoon image.

In depth assignment phase, there are two main parameters, A and p, to control
depth smoothing. If we fix A and increase (., the values of pixels x, will be more
likely to maintain the initial depth values of the coarse depth map and vice versa.
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Figure 9: Three optimized depth maps with different A while 1+ = 1 and 8 = 150.
Left: A = 150. Middle: A = 1500. Right: A = 15000.

In our implementation, we set A as a control parameter and set 4 to a constant. By
doing so, the smoothness of the depth maps can be manipulated by A. As shown
in Fig. 9] we find that the middle result is better than others, and it is critical to
choose a good A value to obtain a desired result. Because the computation of this
step takes less than 5 seconds even for large images, our user-interface allows the
user to change A whenever this is desired; the user can also decide to stop this step
based on the visual results.

In the virtual view synthesis processing, we empirically set the threshold Dy,
to 0.75, which is used to limit the search space for disocculusion inpainting.

4.2. Experimental results

We have produced many multiview conversion results for various cartoon images
using the proposed approach. For example, Fig. [I0] presents the whole multi-
view generation procedure for the ” Pokémon” cartoon image. In this case, there
are four Pokémons with different positional relationships. In order to obtain the
expected depth, the proposed approach first performs pre-segmentation of the input
image. After that, the user specifies the expected depth relationships for the main
segment layers. With further user interaction, the refined depth map is produced
(see the second subfigure of the bottom row). Once the desired depth map is gener-
ated, the proposed approach warps both the color and depth images to the expected
viewpoint designed by the user (see the third column of the same figure). Finally,
on the last column we can see the view synthesis result for both the color and the
depth images. One can also observe that the top of the chick’s head that is clos-
est to the audience has been spatially shifted to be away from other background
objects.

Another example for the input image Doraemon is depicted in Fig. The
same processing workflow is followed as explained before. The proposed approach
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Figure 10: Multiview conversion for ”Pokémon”. Top row: original image, pre-
segmentation, view warped color image, view synthesized color image. Bottom
row: coarse depth maps, refined depth maps, view warped depth image, view syn-
thesized depth image.

Figure 11: Multiview conversion for ”Doraemon”. Top row: original image, pre-
segmentation, view warped color image, view synthesized color image. Bottom
row: coarse depth maps, refined depth maps, view warped depth image, view syn-
thesized depth image.

is able to produce plausible multiview conversion results, as illustrated in Fig. [IT]
In the generated new viewpoint, the cloud in the sky moves to the right. On the
other side, the Doraemon also shifts to the middle of the flag. These phenomena
are coherent with the fact that the camera moves from left to right.

In Fig. multiple views are generated from a single 2D cartoon image using
the proposed approach. Because our solution can generate a plausible depth map
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Figure 12: Many different views generated by a single 2D cartoon image using
the proposed approach.

for the input image, the trees and stone on the background are reasonably shifted
to different imaging planes following the given camera model. These many views
generated from a static 2D image can easily allow the viewer to navigate the scene
from different viewpoints (see the supplemental video demo).

Fig.[I3]|shows the comparison with another interactive depth generation method
introduced in [21]]. Again, in this example our interactive solution can produce a
good depth map. In comparison, the middle subfigure of the bottom row presents
the depth generated by Random Walk-based solution [21]], where the depth has
poor transitions at the regions with strong image gradients. One can observe that
with only a few simple user interactions, the depth map produced by our solution
is more precise than that of [21]. Moreover, when performing the proposed view
synthesis based on such depth maps, our solution generates much more plausible
contents (see the reconstructed mice on the right column).

We further tested a popular depth map recovery method [61]], where structure
from motion (SfM) is used to estimate depth for video sequences in a fully auto-
matic manner. The estimated depth maps are shown in Fig.[T4] In order to compare
the performance subjectively, we also synthesize a new virtual view using the cor-
responding depth maps generated by the above-mentioned methods. We can see
that the depth generated by SfM-based method is far from accurate on this data.
The view synthesis result using the depth produced by SfM is very noisy, and
many pixels are wrongly mapped to the new view. There are several reasons that
could explain these results. Firstly, the contents in these video frames have barely
changed within a very limited amount of time which makes it hard to find the dis-
parities of pixels between frames. Secondly, it is difficult to identify corresponding
feature points between frames featuring the simple textures of cartoons. Therefore,
although SfM techniques are more and more popular on various 3D reconstruction
applications, they are not directly applicable for traditional 2D cartoon scenes.
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Figure 13: Multiview conversion with different depth generation methods. Top
row: original image, depth map generated by our solution, and our view synthesis
result, respectively. Bottom row: original image with user interactions, depth gen-
erated by a Random Walk algorithm and corresponding view synthesis result,
respectively.

4.3. Discussion and limitations

The view synthesis method in the proposed approach is based on [39]. By intro-
ducing user interactions, our solution can avoid various visual artifacts that are
difficult to handle fully automatically. Currently, structure-oriented image comple-
tion and view synthesis (e.g. [26} 29]) are still very challenging. However, limited
user interactions prove to effectively overcome this issue, which motivates the user
interactivity built in the proposed method.

The proposed depth assignment method can be further improved using some
more precise matting (e.g. the closed-form solution in [32]]). The user can select the
objects with few strokes by using image matting techniques and then depth will be
precisely expanded to the selected areas. Although it provides an elegant method
for depth expansion, such an approach is much more time-consuming compared to
the proposed method - see the example obtained with image matting in Fig. [I3]

Although high quality, pleasant multiview results are obtained with our method,
visual artifacts cannot still be avoided in some cases. For example, weak contours
where pixel intensities are very close to those of neighboring pixels are difficult to
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Figure 14: Comparison against the results obtained with the structure from motion
method of [61]. Top row shows the original image, generated depth by our method,
corresponding warping result and view synthesis, respectively. Bottom row shows
two consecutive frames of depth maps generated by structure from motion [61]],
corresponding view warping and synthesized results, respectively.

extract in our solution. Conflicting constraints imposed by user interactions could
also cause our method to synthesize undesired solutions.

5. Conclusions and Future Work

This paper proposes an interactive conversion method to generate multiple novel
viewpoints starting from a single 2D cartoon image. Our work involves multi-label
pre-segmentation and depth assignment for depth map generation from the input
2D cartoon image. Using this depth map, virtual view synthesis is employed to
generate the desired viewpoints of the scene. The proposed solution provides sta-
ble and plausible results by making use of simple user interactions. Experimental
results demonstrate the effectiveness and efficiency of the proposed approach for
multiview cartoon conversion.

Further investigation enforcing temporal consistencies for the proposed mul-
tiview cartoon video conversion method is one of the potential avenues for future
work. Moreover, although the proposed approach enables the user to specify dif-
ferent camera matrix parameters for virtual view synthesis, comfort-driven depth
adjustment (e.g. [56])) is an interesting research aspect to be considered in our
future work.
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Figure 15: Image matting could improve the depth assignment. Left: user interac-
tion; middle: o matting result; right: refined depth maps (see the improvement on
the red boundaries).
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