Historical Context-based Style Classification of Painting Images via Label Distribution Learning

PaperID 424

ABSTRACT
Analyzing and categorizing the style of visual art images, especially paintings, is gaining popularity owing to its importance in understanding and appreciating the art. The evolution of painting style is both continuous, in a sense that new styles may inherit, develop or even mutate from their predecessors and multi-modal because of various issues such as the visual appearance, the birthplace, the origin time and the art movement. Motivated by this peculiarity, we introduce a novel knowledge distilling strategy to assist visual feature learning in the convolutional neural network for painting style classification. More specifically, a multi-factor distribution is employed as soft-labels to distill complementary information with visual input, which extracts from different historical context via label distribution learning. The proposed method is well-encapsulated in a multi-task learning framework which allows end-to-end training. We demonstrate the superiority of the proposed method over the state-of-the-art approaches on Painting91, OIlPainting, and Pandora dataset.

KEYWORDS
painting style classification, label distribution learning, art history

ACM Reference Format:

1 INTRODUCTION
Painting style classification is an attractive topic that can help the public to decode art paintings better and understand the theme and emotion therein [33]. It is a complex cognitive task because multiple visual areas in the human brain are involved in this process [18, 43, 46]. And most art historians agree with the assumption that art can be classified into the specific style [2, 7, 28, 40, 50]. Moreover, it admits high intra-class variations caused by differences between individual creative habit [25]. Since the pioneering work [42] was proposed, several visual features [6, 9, 20, 27, 31, 32] have consistently improved the classification performance leading the research community to address challenging scenarios in complex datasets [3, 5, 24].

Recently, the convolutional neural network (CNN) with hierarchical feature learning capability has led to a breakthrough in many computer vision tasks. Motivated by this, CNN has been widely used to extract the image features for the style classification [1, 34, 35] as well. However, it is widely accepted that the development of painting style is a continuous process and new styles may inherit, develop or even mutate from their predecessors. Furthermore, in actual artistic appreciation, experts usually consider the historical background, politics, religion and other factors when analyzing the style of a painting [19, 47]. From this point of view, painting style evolution is multi-modal because that different input modalities can play an important role in, such as the visual appearance, the birthplace, the origin time. However, existing deep learning methods for painting style classification never utilize multiple input sources mentioned above which encode complementary materials to commonly used visual descriptors.

As shown in Figure 1, twelve paintings from different styles are listed on the axis, and their locations based on their origin time are also marked. We use four marks with different colors to represent the birthplace of these styles in the map, in which the orange, purple, blue, yellow colors represent Italy, France, Britain, and Russia, respectively. The outer border color of the image corresponds to the color of the marker on the map. We can observe that in some cases the transition of styles is subtle, indicating that the styles produced in the same period often have a high degree of similarity, and for some styles originating from different birthplaces there is usually an obvious gap. Therefore, we argue that a good style classification system should consider different input modalities such as the historical context of the paintings mentioned here as they usually encode complementary information with visual descriptors.

Figure 1: The origin time and birthplace of painting styles in the Painting91 dataset. There are some paintings from different styles and we arrange them according to the chronological order, as indicated by the horizontal axis. Four countries with orange, purple, blue, yellow colors represent Italy, France, Britain, and Russia, respectively. Moreover, the border of each painting is highlighted with the corresponding color according to its birthplace.
In order to use these historical contexts, we propose to synthesize historical knowledge into the image label via the label distribution learning (LDL) [4, 11, 13–16, 41] which is further employed to generate a proper label distribution in each modality. Multiple label distributions are finally encapsulated into our learning framework which can significantly assist visual feature learning in CNN thus leading to largely improved classification performance. More specifically, we extract the origin time, birthplace, and art movement information to provide complementary information for visual inputs. To the best of our knowledge, we are the first to extract the art historical context and formulate them to learn the art style. We first study the effect of the style distribution under two kinds of time distributions, a place distribution, and a distribution based on the art movement. Furthermore, we show distributions from each domain are well-complementary and finally a fusion of multiple distributions is advantageous. In the training phase of our experiment, art historical context information (origin time, birthplace, and art movement), which can be easily collected based on the available style label, are converted into a label distribution to assist visual feature learning in CNN. The label distribution works as a strong regularizer by providing a soft label for CNN. During testing, our method works exactly the same way as conventional methods by just a simple feed-forward of only visual inputs images. Extensive experiments show that our method outperforms the state-of-the-art approaches on the Painting91 style dataset, OilPainting dataset, and Pandora dataset. In addition, the proposed method is generic and can be widely applicable for other tasks in which incorporating relevant side-information into visual classification can be beneficial.

Our contributions are summarized as follows. First, we present the historical context-based side information, such as the origin time, birthplace, and the art movement, which may encode complementary information with commonly used visual descriptors. Second, we propose an art historical label distribution learning strategy to encode different input modality into a concrete label distribution. Third, we utilize the knowledge of historical context information to produce a soft label for each painting image and achieve improved performance on three painting datasets. We will make the source code and data available to the public.

2 RELATED WORK

Prior work in the area of painting style classification usually employs conventional visual descriptors or deeply learned visual features. Here we briefly review the related work on painting style classification and label distribution learning.

2.1 Style Classification

Painting style classification has been a classical problem in multimedia community and existing methods typically employ various visual descriptors [1, 9, 10, 24, 42]. Sbalatnig et al. [42] propose a classification system for portrait miniatures and examine the structural signature based on brush strokes, which enables a semi-automatic classification through three different levels of information: the color, shape of the region, and structure of brush strokes. Zujovic et al. [57] present some features that address the salient aspects of a painting (e.g., color, texture and edges) in order to classify paintings into genres. A framework integrating multiple visual features is proposed to support automatic classification on large western painting collections [44]. Moreover, Khan et al. [24] investigate the effect of various local features and global features (such as bag-of-words framework, LBP, GIST, PHOG, Color GIST, etc.) in artist and style classification tasks, and prove combining multiple features can significantly improve the classification performance.

Motivated by the recent success of deep networks on visual recognition, deep learning for art painting classification is also gaining its popularity [21, 29, 30, 48]. Chu et al. [5] use the Gram matrix to calculate the correlations between the responses of features extracted by CNN in style classification tasks. The cross-layer features from CNN also present good experimental results on style recognition tasks [34]. Karayev et al. [23] define several different types of image style based on several different aspects of visual style, including photographic techniques, composition styles, moods, genres, and types of scenes. For these versatile visual elements, they evaluate single-feature performance (e.g., color histogram, GIST, deep CNN features, etc.) as well as second-stage fusion of multiple features. The multi-scale CNN proposed by Peng [35] introduces a method to exponentially generate more training examples with the assumption of label-inheritable property, which can extract multi-scale features from the original and generated images. Another work based on multi-scale features [1] automatically extracts the region of interests (ROI). It describes both holistic and region-of-interests using multi-scale dense convolutional features and separately encodes the two kinds of features using Fisher vector for computational painting categorization.

Although our method bears some similarity with [23, 24] by fusing multiple features, we formulate our solution from a different view and make the first attempt to utilize the historical context-based information to assist visual feature learning in CNN.

2.2 Label Distribution Learning

From the statistic point of view, classification is essentially building a mapping from the instances to their labels. Hence, conventional classification approaches typically answer “which label can describe the instance?” [13], while little is known about “how well can this ground truth label describe the instance?” Considering our painting style classification here, a painting image often relates to multiple basic styles (e.g., Impressionism, Baroque, Cubism, Expressionism and so on). Each basic style can be correlated and play an important role in the image. For instance, the Baroque style is usually considered evolved from the Renaissance style [8]. The various intensities of all the basic styles naturally form an style distribution which can be captured from various aspects, such as historical context, for the painting images. By regarding the style with the highest intensity or style with higher intensities than a threshold as the positive label, the problem can be naturally solved by existing classification methods. Unfortunately, these approaches will lose the important information of the different intensities of the related styles.

To this end, LDL is proposed to use a certain number of continuous labels to describe one instance. This is usually achieved by defining a probability for each label to represent the degree of how it describes the instance. LDL has established its effectiveness in various vision problems [37, 51, 53, 55, 56]. Yang et al. [54] propose the deep age distribution learning (DADL) method to deal with the
We propose to generate label distributions considering the impact via Label Distribution Learning MM’18, October 22-26, 2018, Seoul, Korea on historical information, where a finite set of labels \(\{y_j\}_{j=1}^{N} \) capture complementary information with commonly used visual input in the historical context. Label distributions from three input modalities are well encapsulated into a single distribution finally and serve as a soft-label to enhance the visual feature learning in CNN within a multi-task learning framework. The pipeline of our method is shown in Figure 2.

3.1 Generating Label Distribution

Given painting images \(\{x^{(j)}\}_{j=1}^{N} \), we note the ground truth style as \(\{y_j\}_{j=1}^{N} \), where \(y_j \in \{1, \ldots, c\} \). For each instance, we assign a finite set of labels \(\{I_i\}_{i=1}^{c} \) representing the degree to which styles describe the image regarding to historical information, where \(c \) denotes the number of styles. Note that \(\sum_{i=1}^{c} I_i = 1 \) and \(I_i \in [0, 1] \).

In addition, we further propose three strategies to generate the label distributions denoted as \(t, b, a \), which consider the origin time, birthplace, and art movement, respectively.

Time distribution

Motivated by existing single label-based style classification approaches \([5, 39]\), we first generate the label distribution \(t \) according to the origin time of the style. Previous attempts \([22]\) turn out to be confined because they overemphasize temporally adjacent styles. To this end, we employ two strategies to generate the time distributions for art paintings, as illustrated in Figure 3. The first time distribution (TD1) represents the style distribution according to the numerical order of the styles. In contrast to TD1 which only considers the sequence of occurrence, the second time distribution (TD2) uses the real origin time of each style. It takes the origin time of style as a condition for generating label distribution.

Following the Gaussian distribution assumption in LDL works \([12, 13, 17]\), we adopt the typical Gaussian function to generate the time distribution \(t_i \) for TD1. Each element of \(t_i \) is denoted as:

\[
 t_i = \frac{f(T_i, T_y, \sigma)}{\sum_{k=1}^{K} f(T_k, T_y, \sigma)}. \tag{1}
\]

And the probability density function can be written as follows:

\[
 f(T_i, T_y, \sigma) = \frac{1}{\sqrt{2\pi \sigma}} \exp\left(-\frac{|T_i - T_y|^2}{2\sigma^2}\right) + \frac{\varepsilon}{c}, \tag{2}
\]

where \(T_i \) represents the numerical time index of desired style \(i \), and the parameter \(T_y \) represents the numerical time index of the ground truth style \(y \). The \(\sigma \) denotes the compactness degree of style in terms of the origin time. Here we fix the parameter \(\varepsilon \) to 0.1, ensuring that all the styles are taken into consideration with various probabilities. Then we normalize the label to make sure the sum of distribution is 1 as shown in Equation 1.

For TD2, the origin time of each style does not share a unified step size, as illustrated in Figure 3 (b). More specifically, in some time period, there might be only one painting style, while in another period the styles are much more diversified. We thus normalize such origin time of styles using logarithmic calculation before generating...
distribution

where the parameter

develops the label distribution:

\[\hat{T}_i = \ln \frac{T_i - T_0}{\delta}, \]

where \(\hat{T}_i \) represents the normalized point-in-time value of desired style \(i \) where \(T_i \) denotes the time after normalization. The time parameter \(T_0 \) as well as the parameter \(\delta \) are used to narrow the time interval between neighboring styles to facilitate the subsequent learning processing. And we denote each element of time distribution \(t_2 \) as:

\[t_{2i} = \frac{f(\hat{T}_i, \hat{T}_y, \sigma)}{\sum_{k=1}^{n} f(\hat{T}_k, \hat{T}_y, \sigma)}, \]

where the parameter \(\hat{T}_y \) represents the normalized point-in-time value of the ground truth style \(y \).

Birthplace distribution. We use the birthplace of style to define the label distribution. Observing the birthplace of various styles, one can see that almost all styles were usually originated from several limited countries, and it is easy to discover the transfer of the world art center. Therefore, we define each label of the birthplace distribution \(b \) in the following manner:

\[b_i = \begin{cases}
1, & i = y \\
\frac{\beta}{n_b}, & B_i = B_y, i \neq y \\
0, & \text{otherwise}
\end{cases} \]

where \(B_i \) is the birthplace of style \(i \), \(B_y \) is the birthplace of ground truth style \(y \), and \(\beta \) controls the weight of the birthplace correlation. If \(i = y \), the desired style \(i \) is the real style, so it is assigned the value of 1. For other styles that were born in the same country, we note the total number as \(n_b \), and give them the same label value \(\frac{\beta}{n_b} \), otherwise zero. The rationale here is that styles originate from the same birthplace should have strong correlations than different styles which generate from different birthplaces. Similarly, we normalize the distribution in Equation 5 to make sure their sum is 1.

Art movement distribution. During a restricted period of time, a group of artists share a specific artistic philosophy or goal, and gradually form a technical tendency or style in art, which is understood as the art movement [39]. In this study, we also investigate the feasibility of encoding the art movement into another label distribution. In our view, each art style can usually be associated with an art movement period. Puthenputhussery et al. [39] show that the art styles belonging to the same art movement period have higher similarity than others that are across different art movement periods. In addition, some styles are considered to have an explicit inheritance relationship with others. Similar to the birthplace distribution, we define the value of ground truth style equals to 1. And for other styles that belong to the same art movements, we give the label with a fixed value, otherwise assigned zero. We define each element of the art movement distribution \(a \) as:

\[a_i = \begin{cases}
1, & i = y \\
\frac{\alpha}{n_a}, & A_i = A_y, i \neq y \\
0, & \text{otherwise}
\end{cases} \]

where \(A_i \) is the art movement of style \(i \), \(A_y \) is the art movement of ground truth style \(y \), and \(\alpha \) controls the weight of the art movement correlation. If \(i = y \), the desired style \(i \) is the real style, so it is assigned the value of 1. For other styles that belong to the same art movement, we note the total number as \(n_a \), and give them the same label value \(\frac{\alpha}{n_a} \), otherwise assigned zero. In the same way, the distribution in Equation 6 is normalized to ensure that the sum is 1.

3.2 Multi-factor Distribution

As each label distribution aims to capture different art historical context, they usually are well-complementary. This further motivates us to investigate a proper strategy to fuse multiple label distributions which are elaborated in this section.

As described in Figure 3, we have already investigated two different time distribution strategies, i.e. TD1 and TD2, according to the numerical order of occurrence and the point-in-time of origin. While using TD2 can take into account the particularity of style, we also hope to make use of the order of styles (TD1) to make up for the problem of the extremely distant distance between adjacent styles with partial time spans caused by using TD2 alone. In our implementation, we choose TD1 as the main part of the overall time distribution and adjust the distance of some styles that have a close correlation based on TD2. We further consider incorporating the birthplace factor and art movement factor into our final distribution label. In order to consider multiple art historical factors, we integrate all the information with sum pooling operation, which is simple but efficient. And after normalization, the integrated multi-factor distribution is denoted as \(l \):

\[l = \eta \times t_1 + (1 - \eta) \times t_2 + b + a, \]

where the parameter \(\eta \) controls the influence degree of the point-in-time of style generation. Finally, we normalize \(l \) so that \(\sum_{i=1}^{n} l_i = 1 \).
3.3 Optimization
We assume that we have access to N training samples, and for each sample $x^{(i)}$, we generate the label distribution $P_i^{(j)}$ using the ground truth label $y^{(j)}$. Our loss function is denoted as follows:

$$L = \lambda L_{sty}(x, y) + (1 - \lambda) L_{dis}(x, l),$$

where the L represents the total loss, L_{sty} and L_{dis} respectively denote the classification loss and style distribution loss (KL loss), and the $\lambda \in [0, 1]$ is a weight factor to control the proportion of two losses. For the classification loss, we calculate the loss of the ground truth and predicted style, and minimize the softmax function to optimize it, denoted as:

$$L_{sty}(x, y) = -\frac{1}{N} \sum_{j=1}^{c} \sum_{i=1}^{N} \mathbf{1}(y^{(j)} = i) \ln p_i^{(j)},$$

where $p_i^{(j)}$ indicates the probability of classifying the j^{th} instance $x^{(i)}$ as the i^{th} style. And $\mathbf{1}$ is an indication function where $\mathbf{1}(e) = 1$ i.f.f. $e = True$, otherwise $\mathbf{1}(e) = 0$. For the classification loss, we calculate the loss of the ground truth and predicted style, and minimize the softmax function to optimize it, denoted as:

$$L_{dis}(x, l) = -\frac{1}{N} \sum_{j=1}^{c} \sum_{i=1}^{N} \mathbf{1}(y^{(j)} = i) \ln p_i^{(j)}.$$

And the style distribution loss measures the KL divergence, which is defined as follows:

$$KL_{div} = \sum_{i} f_i^{(j)} \ln \frac{f_i^{(j)}}{p_i^{(j)}} = \sum_{i} -f_i^{(j)} \ln p_i^{(j)}.$$

In this way, we can employ information of I, derived from historical contexts such as origin time, birthplace and art movement, as a soft-label to assist visual feature learning in CNN. Hence, our system can not only learn from “which style can describe this specific painting image?”, but also benefit from utilizing side information about “How well this style can describe this specific painting image?”.

4 EXPERIMENT
4.1 Datasets
We evaluate the effectiveness of our method for the painting style classification on challenging painting datasets: Painting91 [24], OilPainting [5], and Pandora dataset [9]. The Painting91 dataset consists of 4,266 paintings of 91 painters, in which 2,338 painting images coming from 50 artists are distributed into 13 style categories. We only use these images that have the style label (2,338 images) to evaluate the classification performance. The training set and test set contain 1,250 and 1,088 images respectively, which is consistent with existing work [24]. The OilPainting dataset collects totally 19,787 oil painting images belonging to 17 image styles. The Pandora dataset contains 7,724 images from 12 art styles. Following existing evaluating protocol [5, 9], five-fold and four-fold cross-validation is conducted on the OilPainting and the Pandora dataset respectively.

4.2 Implementation Details
We build a multimodal CNN framework based on the popular deep model VGGNet [45] with 16 layers, which is initialized using the weights trained for the large-scale image classification task [26]. We change the category number of the fc8 layer based on the requirement of datasets because the class number of painting datasets is not equal to ImageNet categories. Different from the original loss layer of VGGNet, we use our multi-task loss including the classification loss and style distribution loss in order to accommodate the style distribution over the three factors we have proposed. Since these three datasets we used only have a single label for each image, firstly we need to generate distribution labels by means of the relationship between various styles, which respectively conform to different factors. And these historical context information are only used to generate the label distribution for the training set. The learning rate of the last fully-connected layer is initialized from 0 to 1 in fig(a), and the value of α and β from 0.1 to 0.6 in fig(b) and fig(c).

4.3 Baseline
For the painting style datasets, most of the existing works recognize the style with the only ground truth label [23, 24, 34]. Based on this, many works achieve promising performance for style classification [1, 5] with VGG network. We apply the probability distribution predicted by the network to compare the generated label distribution with the predefined label distribution, and according to highest probability of style in the distribution to calculate the classification accuracy. In order to verify the effect of the proposed art historical label distribution learning, we choose VGGNet trained with only the ground truth style label as our baseline.

4.4 Distribution Learning Results
We generate the label distributions separately considering the origin time relationship of the style (using the proposed two time distribution strategies), the birthplace relationship and the specific art movement. In addition, we fuse these features of historical context that can comprehensively reflect the relationship of styles in
multimodal label distribution experiments. By optimizing the classification loss as well as the style distribution loss, the network learns a variety relationship of historical context between the styles of training.

In this section, we first discuss the effect of hyper-parameters in our method, and then we provide ablative experiments to understand the impact using different art historical factors. Finally, we compare the proposed method against the state-of-the-art approaches.

4.4.1 Hyper-parameter. In Figure 4, we show the experiment results using different value of λ, β and α in fig(a), fig(b) and fig(c), respectively. We first research the effect of the value of λ on the experimental results. When the $\lambda = 0.8$, we usually can acquire the best classification accuracy. It means the classification loss is the main part of the final loss because the style classification task is still a single label forecast. So in this paper, we set $\lambda = 0.8$ based on multiple experiments, and we achieve the best classification effect with this value.

We assign the birthplace label value of real style to 1, and for other styles that were born in the same country, we give the fixed value. The final performance is robust to the variations of β in certain ranges. However, setting β to be a tiny value, for example, the label distribution performs similarly to the single label when the $\beta = 0.1$. On the other hand, setting β to a relatively larger value, say $\beta = 0.6$, will over-reduce the effect of the commonly-used ground truth style label, and we observe a downward trend in the final results. In this work, we set $\beta = 0.3$ for birthplace label distribution in order to get the best classification performance. Similarly, we set $\alpha = 0.3$ for the art movement label distribution.

4.4.2 Performance on the Painting91 style dataset. In this section, we make a comparative assessment of our style label distribution method with deep learning approaches and other popular methods on the Painting91 style dataset. Table 1 shows experimental results using the baseline and our methods using label distribution. We define three different historical context factors (the origin time factors include two representations) that affect the label distribution, where the TD1, TD2, BP, and AM respectively represent the proposed two time distribution strategies, Birthplace, and Art Movement.

Table 1: Ablation experiments on the Painting91, OilPainting, and Pandora datasets. The first line denotes baseline using the single label. And we consider four additional properties of historical context with different label distributions. Note that TD1, TD2, BP, and AM represent two time distribution strategies, Birthplace, and Art movement, respectively.

<table>
<thead>
<tr>
<th>Base</th>
<th>TD1</th>
<th>TD2</th>
<th>BP</th>
<th>AM</th>
<th>Painting91</th>
<th>OilPainting</th>
<th>Pandora</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>72.89%</td>
<td>64.24%</td>
<td>70.52%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>76.29%</td>
<td>69.58%</td>
<td>71.09%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>75.93%</td>
<td>68.88%</td>
<td>71.12%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>76.66%</td>
<td>69.28%</td>
<td>72.21%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>76.38%</td>
<td>69.05%</td>
<td>71.95%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>77.11%</td>
<td>69.85%</td>
<td>71.20%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>77.39%</td>
<td>70.23%</td>
<td>72.87%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>77.21%</td>
<td>70.10%</td>
<td>72.53%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>77.76%</td>
<td>70.59%</td>
<td>73.28%</td>
</tr>
</tbody>
</table>

Table 2: Classification performance on the test set of Painting91 dataset, OilPainting dataset, and Pandora dataset. Note that some methods do not provide the source code, thus some datasets cannot be evaluated, denoted as '-'.

<table>
<thead>
<tr>
<th>Method</th>
<th>Painting91</th>
<th>OilPainting</th>
<th>Pandora</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGGNet [45]</td>
<td>72.89%</td>
<td>64.24%</td>
<td>70.52%</td>
</tr>
<tr>
<td>Khan F. S. et al. [24]</td>
<td>62.20%</td>
<td>37.90%</td>
<td>70.52%</td>
</tr>
<tr>
<td>Condorovicci et al. [6]</td>
<td>-</td>
<td>54.70%</td>
<td></td>
</tr>
<tr>
<td>Florea et al. [9]</td>
<td>-</td>
<td>54.70%</td>
<td></td>
</tr>
<tr>
<td>CMFFV [38]</td>
<td>67.43%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSCNN1 [35]</td>
<td>69.67%</td>
<td>55.24%</td>
<td>70.32%</td>
</tr>
<tr>
<td>MSCNN2 [35]</td>
<td>70.96%</td>
<td>57.92%</td>
<td>69.75%</td>
</tr>
<tr>
<td>CNN F4 [34]</td>
<td>69.21%</td>
<td>58.47%</td>
<td>70.47%</td>
</tr>
<tr>
<td>Peng K. C. et al. [36]</td>
<td>71.05%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gram [5]</td>
<td>71.86%</td>
<td>60.61%</td>
<td>-</td>
</tr>
<tr>
<td>Gram-Cov [5]</td>
<td>72.41%</td>
<td>60.72%</td>
<td>-</td>
</tr>
<tr>
<td>Gram dot Cos [5]</td>
<td>73.59%</td>
<td>63.33%</td>
<td>-</td>
</tr>
<tr>
<td>SCMFA [39]</td>
<td>73.16%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anwer R. M. et al. [1]</td>
<td>74.80%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ours</td>
<td>77.76%</td>
<td>70.59%</td>
<td>73.28%</td>
</tr>
</tbody>
</table>
the single factor results, the experiment of using more than one historical context factor can complement each other and achieve better performance. The last line in Table 1 considers multiple historical context factors based on the multimodal CNN framework, and it achieves the best accuracy of 77.76%.

To evaluate the effectiveness of the multi-factor label distribution, we compare our proposed method with deep learning methods and other popular methods on the Painting91 style dataset. Table 2 shows the experimental results of our method as well as other style classification methods for style classification. Khan et al. [24] use some common visual feature methods and combine them to get the result of 62.20%. The experimental result using MSCNN [35] is 70.96%, and independently calculating the correlation between Gram matrices and Cosine similarity (Gram dot Cos) [5] achieves a classification accuracy of 73.59%.

In addition, the classification accuracy using SCMPA (a sparse representation based complete kernel marginal Fisher analysis) [39] can achieve 73.16%, and the method of the deep features combining holistic and part-based information [1] is with the best result of 74.80%. In general, our method obtains a classification accuracy of 77.76%, which outperforms the current state-of-the-art methods.

4.4.3 Performance on the OilPainting dataset. The classification result of the single label is 64.24%, without considering the origin time, the birthplace of the style, and the artistic style relationship reflected by art movement. For the single factor distribution, the ‘TD1’ strategy has achieved a classification accuracy of 69.58%, and the result of ‘TD2’ strategy is 68.88%, which are similar to the experimental result on the Painting91 dataset. However, different from Painting91, the label distribution experiment using the birthplace factor has only been made a less improvement compared with the single label result. This result reflects that the styles in OilPainting dataset are not very discriminatory for the place of origin. In this dataset, 12 painting styles are originated from France, and the remaining five styles come from other three regions, which means that there is a geographical connection between more than two-thirds of these styles. This would be the main reason why we can not generate a discernible style distribution through the geographic information. As an example, the Renaissance style paintings are divided into three categories: High Renaissance, Northern Renaissance, and Mannerism (Late Renaissance). The Renaissance was born in Italy and later throughout Europe, and the Northern Renaissance refers particularly the Renaissance occurred in Europe north of the Alps. Therefore, it is not appropriate to classify its birthplace as Italy (the birthplace of other two Renaissance styles) or the northern region as a place of origin. The label distribution experiment using the art movement relationship achieves a classification accuracy of 69.05%.

As shown in Table 2, we compared the experimental results of the proposed method with the existing methods on OilPainting dataset, and the classification result of the VGGNet is 64.24%. The classification accuracy using the Gram matrices can be achieved 60.61%, and the method of independently calculating the correlation between Gram matrices and Cosine similarity (Gram dot Cos) achieves the best classification accuracy of 63.33% [5]. Notice that our method obtains a classification accuracy of 70.59%, which outperforms the current state-of-art methods by over 7%.

4.4.4 Performance on the Pandora dataset. The classification result of the baseline is 70.52% without considering the historical context. For the single factor distribution, the ‘TD1’ and ‘TD2’ strategies achieve similar results (i.e., 71.09% and 71.12% respectively). Although in this dataset the origin time intervals of some style origins are larger than those in such as Old Greek Pottery and Iconoclasm, we still observe some advantages comparing with the baseline. In addition, the label distributions of the birthplace and the art movement factor display the better classification effect, which achieves the accuracy rate of 72.21% and 71.95% separately. It indicates that the birthplace and the art movement information can better reflect the connection between styles in Pandora dataset. Combining multiple historical context knowledge further improves
the classification results, and finally, the proposed method achieves the classification accuracy of 73.28% using four historical information.

As shown in Table 2, we compare the multi-factor method with other previous methods on the Pandora dataset. The classification result of traditional visual descriptor method using local and global features [9] is 54.70%. The classification accuracy of MSCNN1 [35] is 70.32%, and the CNN F4 [34] method achieves 70.47%. The single label method using VGGNet [45] gets the result of 70.52%. Our method considering the multi historical factors outperforms these methods and achieves the accuracy of 73.28%.

4.5 Visualization and Analysis

As shown in the Figure 5, we list some representative painting images from the validation dataset of Painting91, and compare the predicted results between our method and the single label method using VGGNet for each painting. In each group of distribution, the red distribution represents the ground truth label (GT), and blue distributions represent six predicted results using the single label (VGGNet) and different historical context (two time strategies TD1 and TD2, the birthplace distribution (BP), the art movement distribution (AM), and multiple historical context factors (Ours)). In each distribution image, the ordinate indicates the probability of each label, and the abscissa indicates 13 styles in Painting91 dataset, of which the numbers 1 to 13 respectively represent Renaissance, Baroque, Neo-classical, Romanticism, Realism, Impressionism, Post-impressionism, Symbolism, Cubism, Constructivism, Surrealism, Abstract expressionism, and Pop art.

In Figure 5, the first painting is Baroque style, and the single label method is very firmly that this is a Renaissance style painting. In our methods, both two kinds of time distributions show a decreasing trend on both sides of the ground truth style except for the difference of each distribution value, and predicted distributions are roughly consistent with the generated distributions using historical context. For the birthplace distribution, the second highest is the Renaissance that is also born in Italy. The second painting comes from the Neo-classical style which is often confused with Baroque, probably because they have similar color characteristics and the strong contrast of light and shade. This feature is also reflected in time distributions since the Baroque and the Neo-classical style both originate before the 19th century. For these two paintings, the classification advantage of the art movement distribution is not very obvious (the second highest value approximates the probability of the correct style) due to the confusion of the image itself. But sometimes art movement factor also shows the better differentiation. The last painting belongs to the Surrealism style, while it also has strong baroque and neoclassical features due to its dim shades. The VGGNet misclassified it into Neo-classical style, and our methods using different historical context are also affected by the diverse features of the painting, especially the TD1. Fortunately, the birthplace distribution and art movement distribution can effectively alleviate this situation. Therefore, our method affects style classification via combining many factors in historical contexts that reflect the development of painting style.

As shown in the Figure 6, we compare our method with the single label method in the Painting91 dataset. Two groups of fig (a) and fig (b) show the results of the VGGNet and the proposed label distribution method. We show the two-dimensional representation using t-SNE [49] on the left, and the right image is the feature embedding with 13 style categories denoted by different colors. The VGGNet is trained in the discrete label space, while the proposed method takes the style relation into consideration. Please, zoom-in for details of the border between the Baroque and the Renaissance.

5 CONCLUSION

Different from the existing methods that only use visual features for painting image style classification, we show that several historical context-based side information such as the origin time, birthplace, and the art movement may encode complementary information. Motivated by this, a multi-factor distribution is employed, based on an ensemble of label distribution learning with these three factors, as a soft label to enhance the feature discriminability in CNN. We achieve this knowledge distilling through a multi-task learning framework which is end-to-end-trainable. Experimental results demonstrate that our proposed method successfully embodies the relationship of painting styles in historical context and performs favorably against the state-of-the-art approaches on various painting style datasets.
REFERENCES

