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Abstract—When compared to conventional 2D video, multiview
video can significantly enhance the visual 3D experience in
3D applications by offering horizontal parallax. However, when
processing images originating from different views, it is common
that the colors between the different cameras are not well
calibrated. To solve this problem, a novel energy function-based
color correction method for multiview camera setups is proposed
to enforce that colors are as close as possible to those in the
reference image but also that the overall structural information
is well preserved. The proposed system introduces a spatio-
temporal correspondence matching method to ensure that each
pixel in the input image gets bijectively mapped to a reference
pixel. By combining this mapping with the original structural
information, we construct a global optimization algorithm in a
Laplacian matrix formulation and solve it using a sparse matrix
solver. We further introduce a novel forward-reverse objective
evaluation model to overcome the problem of lack of ground truth
in this field. The visual comparisons are shown to outperform
state-of-the-art multiview color correction methods, while the
objective evaluation reports PSNR gains of up to 1.34 dB and
SSIM gains of up to 3.2% respectively.

Index Terms—Multiview video, color correction, energy min-
imization, Laplacian matrices, spatio-temporal matching, struc-
ture preservation.

I. INTRODUCTION

MULTIVIEW video significantly improves the view-
ing experience by providing an immersive percep-

tion of 3D scenes. A plethora of multiview video appli-
cations are being targeted nowadays, including multiview-
based three-dimensional television (3DTV), free-viewpoint
television (FTV), telepresence, content creation, advertising,
entertainment, gaming, or virtual reality. Due to the continuous
progress of image-based rendering and view interpolation tech-
nologies, these applications have received a steadily increasing
attention over the past years both from the academic and
industrial communities [1], [2].

Although multiview video intrinsically contains more infor-
mation about the 3D scene compared to conventional single-
view video, its broad-scale deployment in practice remains a
distant objective, and a lot of research is still necessary in order
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to make it a reality. Among the open issues, one challenging
topic is multiview video color correction. Because multiview
video is recorded by different cameras, significant inter-view
variations in the recorded color channels may arise either
globally, over an entire video frame, or locally at certain points
of interest. Global color misalignment could be introduced
by different color temperatures and other parameter miscal-
ibrations between the cameras. Local color discrepancies are
usually caused by different lighting conditions because of
complex surface material and reflective properties of objects
in the scene. Consequently, when generating novel views in
the scene using image-based rendering (IBR) techniques [3],
the misaligned colors between the input views lead to color
inconsistencies in the synthetic views. These artifacts severely
affect the visual quality in the synthesized views. Such color
misalignment (or color asymmetries) would also result in
visual fatigue, binocular rivalry and other negative 3D viewing
effects [4]–[6]. Moreover, multiview compression performance
is affected by global or local illumination variations between
different views.

To account for color differences in multiview video, the
scene content can be modified directly, which is referred to
as prefiltering [7], or it can be changed during the encoding
process [8]. In contrast to a prefiltering method, color cor-
rection carried out within a compression system can benefit
from information computed by the encoder (for example the
motion vectors). Obtaining this information in a prefiltering
method would lead to a significant increase in computational
complexity. On the other hand, prefiltering techniques are not
limited by the constraints imposed in a coding system, whose
main goal is to optimize the rate-distortion performance, and
which does not take into account the constraints that should
be satisfied by a color correction scheme.

The color correction method proposed in this work can
be considered as a prefiltering technique. In this family of
algorithms, multiview color correction is performed according
to some target criteria [9] which needs to be optimized by
taking the other views into account. The reference technique
in the literature in this category is the traditional histogram
matching method which attempts to correct the color be-
tween the input and reference images according to a global
cumulative histogram matching criterion. Despite of their
popularity, histogram methods [7], [10], [11] are agnostic
about structural information in the input images, which may
cause local distortions in the textural structures when color
correction is performed. The proposed method solves this
problem by making use of local texture information in the
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input images and by finding an optimal reconstruction that
effectively alters the color histogram, while preserving the
structural information as well as colors at important feature
points.

The main contributions of the proposed work are as follows.
• We propose a novel approach for color correction which

preserves structural information in the corrected output
and provides color consistencies of corresponding spatio-
temporal feature points.

• The color correction problem is formulated as an op-
timization problem, which is solved using an efficient
Laplacian matrix optimization framework.

• To overcome the problem that no ground truth in this
research domain exists, we introduce a novel forward-
reverse evaluation methodology to evaluate the color
corrected results.

The remainder of this paper is organized as follows. In
the next section we discuss the related work. The proposed
multiview video color correction method is presented in detail
in Section III. Section IV reports and discusses the experimen-
tal results and compares our method with existing reference
techniques from the literature. Finally, Section V draws the
conclusions of our work.

II. RELATED WORK

A wide variety of color correction methods have been pro-
posed in the literature. Multiview video color correction tech-
niques can be roughly divided into three categories, namely, (i)
hardware-based approaches performing color calibration in the
acquisition step [12], [13], (ii) techniques performing prefilter-
ing after acquisition, and (iii) those performing synchronous
correction during encoding. Here we focus on the last two
categories, as hardware-based approaches are beyond the scope
of this paper.

As a preprocessing step in video compression, a block-based
matching and average color based least-squares regression
method is proposed in [9] to compensate for color differences
in the different input views. Kim et al. [14] also introduce
a combination of algorithms for color and focus correction
as a prefiltering step before encoding. In [15], the authors
propose a block-based histogram matching method, which
needs to perform spatial prediction for matching image parts
which is time consuming. Yamamoto et al. [16] introduce
a Gaussian filter-based color detection method with lookup
tables to correct the multiview color differences. To build
nonlinear lookup tables, researchers also introduce dynamic
programming [17] or polynomial basis [18] optimization by
local Gaussian-like analysis in the image space. In [19],
the input image is segmented and corrected by locally cor-
responding keypoints. Shao et al. introduce both preferred
region selection [20] and linear regression [21] to find the
correction coefficients for local regions. By constructing a
spatial variant color discrepancy model, they extend their
multiview color correction work in the temporal direction.
Their work requires constructing a precomputed disparity map
using a linear operator and performs a PCA-based relevant
color selection being however limited to linear corrections.

Most existing preprocessing methods do not pay much at-
tention to the original local texture information when searching
for a globally optimal color correction solution. To increase en-
coding gains in multiview video, a histogram matching-based
luminance and chrominance correction method is proposed
in [7], [22] to align all camera views to a reference view in
the center of the camera array. Fezza et al. also introduce a
histogram matching-based reference view decision and color
correction model [11]. Cumulative histogram-based matching
can be seen as a special kind of nonlinear matching when
applied to the entire image, being a useful technique to correct
global discrepancies in the color space. However, the major
drawback of the histogram matching method is that the color
matching is based on the global color distributions of the input
and reference images, and therefore the original texture or
gradient information can be easily destroyed. As it will be
shown in this paper, global histogram-based matching does
indeed change the local gradient structures when performing
color correction. In image-based rendering, the main goal is to
make use of such complex surface characteristics (gradients)
and effectively preserving them is of paramount importance for
a realistic rendering result. To overcome this drawback, linear
scaling [9], [23], pairwise basis function [8] or high-order
polynomials [9] are often used to fit the color distribution. Ilie
et al. [12] construct a linear transformation to modify the cam-
era’s color by identifying an optimal 3× 3 transform matrix.
Li et al. [24] introduce an over determined multiview color
calibration method. Different from our approach, their method
is based on global linear-wise correspondence correction and
a homogeneous linear system by dynamic range shaping.

Color compensation performed in coding systems has also
been well researched recently. The basic philosophy in this
kind of methods is to subtract the average difference be-
tween the reference view and the current one when per-
forming motion compensation in the encoder. In [8], the
DC coefficients at macroblock (MB) level are recomputed
according to the current image and the corresponding MB
in the reference camera. Similarly, Lee et al. [25] propose
a DC coefficient modification scheme and integrate it into
the MPEG Joint Multiview Video Model (JMVM) reference
software. Yamamoto et al. [26] also use correction lookup
tables during the compression process for interview prediction.
In general, this family of methods usually needs to predict
the illumination differences between MBs and compress the
predicted color differences into the bit stream. Block-matching
correction methods would also result in outliers because of
some poor matches. Following the assumption that space-time
neighboring frames depict close similarity, a MB-based color
annotation and colorization postprocessing method is proposed
in [27]. Their work is based on directional spatial prediction
used for intra-frame coding, and performs a prediction-based
reference generation according to the block’s weighted average
instead of the original gradient information. As discussed
in [27], MB-based color compensation easily suffers from
blocking artifacts. Furthermore, the modification strategies of
the motion estimation (ME), motion compensation (MC) and
other related reconstruction processes do increase complexity
and cost at both encoding and decoding sides.
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Fig. 1. The generic framework describing the proposed multiview video color correction algorithm.

Color correction related image/video processing is a hot
issue in many other research fields, e.g., interactive recoloriza-
tion [28], [29], image texture decomposition [30], video se-
quence matching [31] and color transfer between images [32],
[33]. At the same time, color correction is a fundamental
topic in stitching and composition using images captured
from different views; we refer the reader to recent surveys
and evaluations of color image/video editing techniques [34],
[35]. Despite of this broad spectrum of methods and research
interests, to the best of our knowledge, none of the existing
color correction works does take advantage of the inherent
coherency of multiple viewpoints in the same scene or of
temporal consistencies in the same viewpoint. These are
aspects that are accounted for in the proposed approach, as
detailed next.

III. PROPOSED ALGORITHM

A. Overview

The proposed multiview video color correction framework
is depicted in Fig. 1. To compute the optimal color for the
input view according to the reference view, we construct a
Laplacian matrix optimization problem by taking into ac-
count the original texture’s structural information, the color of
spatio-temporally consistent correspondence pairs as well as
histogram-based matching. The corrected image should satisfy
that its structural information (we focus on the gradient) is
as similar as possible to the input, and the spatio-temporal
correspondence pairs are consistently preserved with those
not only in temporally adjacent frames from the same view
but also in the synchronous frame of the reference view. The
proposed color correction approach is detailed next.

B. Model Formulation

Suppose that An is the nth input frame from a camera, Rn

is the synchronous reference image from a reference camera

and the target image Gn is the expected output color image.
From the 3D geometry perspective, the 3D Euclidean scene
(visual space) V3 should follow the mapping relation

f : V3 7→ E2 × D1, (1)

where E2 is the 2D Euclidean plane (pictorial space) and
D1 is a 1D affine structure (e.g., depth space) [36]. If such
scene mapping is lossless and the viewpoint warping between
different cameras was bijective according to the scene ele-
ments (or pixels with discrete format), the color transition
between An and Rn would be perfectly described. However, in
current multiview camera models, the scene mapping relation
is far from lossless and the reconstructed content contains
missing (or invalid mapping) points. Furthermore, temporal
fluctuations of color (color flickering) are produced by dif-
ferent camera exposure times, color temperature or noise.
The main principle that drives the proposed color correction
model is that the color of corresponding pairs of points should
be consistent when viewing them from different neighboring
cameras. Furthermore, the structure information of the output
scene content Gn should be consistent with that of the original
An. In the following, we construct an energy formulation
and optimization problem to mathematically describe the
aforementioned color consistency and structure consistency
concepts.

Color consistency. The color consistency (data term)
means that the color of the content in target Gn should be as
consistent as possible to that of both the reference image Rn

and the previously corrected image Gn−1. Firstly, we define a
reference set of known images R = {Rn, An, An−1, Gn−1},
and an intermediate pixel set G̃, having the same size of Gn,
in which each pixel is calculated from one of the images in
R. Hence, the color consistency energy is defined as

Ed =
∑
u

(Gn(u)− G̃(u))2, (2)
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where u is the pixel position of the image. To compute G̃ from
R, feature matching and 3D mapping relation between cameras
can be taken into account. In III-C the proposed construction
of G̃ is detailed.

Structure consistency. To preserve the scene content in
the output image, we introduce the preservation of the image
gradient as a means to enforce structure consistency. In other
words, the gradient in Gn should be preserved such that it
is as similar as possible to the gradient of the input image
An. Formally, the structure consistency energy (regularization
term) is defined as:

Er =
∑
u

((
∂Gn(u)
∂x

− ∂An(u)
∂x

)2 + (
∂Gn(u)
∂y

− ∂An(u)
∂y

)2),

(3)
where ∂

∂x and ∂
∂y are the discrete differentiation operator in

the horizontal and vertical directions, respectively. It should
be noted that this equation can be rewritten in the following
matrix-vector form:

Er = (DxGn −DxAn)T (DxGn −DxAn)

+(DyGn −DyAn)T (DyGn −DyAn),
(4)

where matrices Dx and Dy are forward discrete differentiation
operators in horizontal and vertical directions, respectively.
(·)T denotes the transpose operator of a matrix. Because of
the structure consistency between An and Gn, we assume that
feature matching (mainly based on gradient and luminance
information) between any image, name it Bn, and An is the
same as the matching between Bn and Gn.

Total energy. The proposed total color correction energy
consists of the color consistency energy and structure consis-
tency energy, that is:

E = Ed + βrEr, (5)

where βr controls the balance between the color consistency
energy Ed and structure consistency energy Er. Modelling of
Ed is explained in the next section. Multiview color correction
is posed thus as a global optimization problem wherein the
total energy E in the output image is minimized.

C. Solution

To solve Eq. (5) and to perform multiview video color cor-
rection, we introduce correspondence modeling and filtering
schemes as well as a Laplacian matrix-based optimization
solution.

Correspondence modelling. To construct the pixel set G̃
from the reference image set R, we consider three classes of
image-wise correspondences:

1) temporal correspondence mapping between temporally
adjacent frames in the output camera;

2) spatial correspondence mapping between input (or out-
put) and reference frames;

3) additional correspondence mapping, where pixels that
cannot correspond to a temporal or spatial neighbor are
matched to a histogram corrected version of the input.

The first class of mappings describes the color consistency
in the temporal direction of the input view, and we define
this class of relevant pixels in G̃ as the set of G̃t. The second
class describes the color consistency between different camera
views, and the mapping pixels are denoted as G̃c. Ideally,
the mapping between G̃ and Gn is bijective. However, not
only are there overlapping points, but there are also missing
points when performing the 3D warping from Rn to Gn or
matching between An and Gn−1 and these are caused by
discretization, occlusion, scene motion, etc. For this reason,
the first two mapping classes cannot constitute a complete
bijective mapping. Therefore, we introduce the supplementary
pixel set G̃h to complete the full bijective mapping relation
between G̃ and Gn and this pixel set should satisfy the
following property:

G̃h = G̃ \ (G̃t ∪ G̃c), (6)

where (\) indicates the relative complement of two sets and
(∪) denotes the union operator.

Suppose Hn is a histogram matching image from An to
Rn, and p(u,v) denotes an aforementioned correspondence
pair between a point located at u (in G̃) and another pixel at
v (in Rn, Gn−1 or Hn). According to the mapping classes,
we further denote the sets of corresponding point pairs as Ψt,
Ψc and Ψh, with different weighting factors βt, βc and βh,
respectively. Note that in Ψh(u,v) each correspondence pair
should follow u = v, which means that the points are co-
located in the same position of the image space. The pixel
values in G̃ are computed as

G̃ (u) =

 Gn−1(v) + αn(u,v) if u ∈ G̃t, p(u,v) ∈ Ψt

Rn(v) + τn(u,v) if u ∈ G̃c, p(u,v) ∈ Ψc

Hn(v) otherwise
,

(7)
where αn(u,v) indicates the original temporal color differ-
ences between u (in An) and v (in An−1), and τn(u,v) is
the color transition term between u (in Gn) and v (in Rn).
According to this equation, for each point belonging to the first
class, its target color value is computed using its corresponding
point in Gn−1 and the original temporal color difference in
the input camera. Similarly, in the second mapping class each
pixel’s target color is computed based on the corresponding

Ed =
∑

u∈G̃t,

p(u,v)∈Ψt

βt(Gn(u)− G̃(u))2 +
∑

u∈G̃c,
p(u,v)∈Ψc

βc(Gn(u)− G̃(u))2 +
∑

u∈G̃h,

p(u,v)∈Ψh

βh(Gn(u)− G̃(u))2 =

∑
u∈G̃t,

p(u,v)∈Ψt

βt(Gn(u)−Gn−1(v)− αn(u,v))2 +
∑

u∈G̃c,
p(u,v)∈Ψc

βc(Gn(u)−Rn(v)− τn(u,v))2 +
∑

u∈G̃h,

p(u,v)∈Ψh

βh(Gn(u)−Hn(v))2

(8)
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(a) reference frame Rn and warped occlusions to current view An (b) temporal direction matching in current view between Gn−1 and Gn

(c) initial matching between current and reference views (d) refined filtering result between current and reference views

Fig. 2. Corresponding feature pairs filtering effect for multiview video. (a) reference frame and occlusion regions when warping to current view; (b) temporal
correspondence pairs according to SURF feature matching [37] between adjacent frames in current view; (c) initial matching result between current and
reference view by feature matching; (d) refined filtering result between current and reference view.

point in the reference camera and the transition color between
the two cameras. Each pixel’s target color in the last mapping
set is equal to the corresponding pixel’s color in Hn.

Finally, by recalculating the valid mapping points with the
class formulation as described in Eq. (7), the color consistency
energy in Eq. (2) can be rewritten as Eq. (8). Note again that
in order to preserve the temporal correspondence matching,
we use the uncorrected image to perform matching, while
we use the corrected color in the previous frame to finalize
the color correction in current frame. For instance, we search
for corresponding points by performing the matching between
An−1 and An, but we choose the color of corresponding target
pixels from Gn−1 (instead of those from An−1) for temporally
consistent color preservation in the optimization.

Spatio-temporal correspondence pair filtering. Corre-
spondence matching for multiview color correction can be
performed using block-based matching methods [9], [27] or
feature point matching [11], [16], [20]. One of the advantages
of block-based matching is that it can produce far more
matching points between images [9], but these matches are
often less reliable compared to feature point matching. Hence,
we employ Speeded-Up Robust Feature (SURF) [37] matching
in order to obtain pairwise corresponding points.

Although the popular SURF approach produces good
matching results, we can improve its performance in multiview
video correspondence matching by applying several filtering
techniques, as detailed next. Ideally, the matching vectors of
the scene content between different cameras should be decided
by the camera view warping and by the object’s velocity
in the scene for temporally adjacent frames. Moreover, local
matching vectors should tend to be locally consistent (cfr. the
rigid body motion assumption in optical flow). Thus, we filter
out wrong correspondences by applying this principle. Note
that we followed a similar methodology in multiview video
inpainting [38], but there the correspondences are constructed

and filtered based on the immediate spatial neighbors.
Firstly, the camera array in multiview video capture systems

is relatively dense (with many of the cameras being distributed
in the same horizontal line). Thus, for spatially corresponding
matching points we introduce a threshold to eliminate outliers
for which the matching vectors would be too large:

Γc (p(u,v)) =
{

1 if dc(u,v) < δc(u,v)
0 otherwise , (9)

where dc(u,v) is the ideal matching distance between a pixel
at u (in An) and its corresponding point at v (in one image
of R) by camera warping, and δc(u,v) is a threshold on
this distance. Because most object motion is in horizontal
direction, we empirically determined δc(u,v) as 300 and 50
pixels in the horizontal and vertical directions, respectively.

Furthermore, since the content captured by different cam-
eras are in the same scene, the matched content should not
appear in the camera warping hole. In other words, the
matched corresponding points in one camera should not have
disappeared (be occluded, strictly speaking) in another camera.
Hence, we define a matching depth filter to avoid this effect:

Γw (p(u,v)) =
{

1 if dw(u,v) = 1
0 otherwise , (10)

where dw(u,v) is a binary mask image which indicates which
pixels of the reference are visible to the input camera. Take
Fig. 2(a) as an example, when Rn (the left part) is warped to
An (the right part), there are some occlusion regions and we
define each pixel’s dw value as zero in such regions. For a
pixel located at u (in An) and its corresponding pixel at v (in
Rn), if dw(u,v) = 0, it means the matching is outside of the
input image or occluded (by a foreground object), Γw(p(u,v))
ensures that there will be no matching between these points.

As an example, Fig. 2(c) and Fig. 2(d) show the effect
with and without the matching vector filters, respectively, and
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TABLE I
COMPLEXITY OF THE PROPOSED MULTIVIEW VIDEO CORRECTION ALGORITHM

Test Sequence Objects2 Race1 Rena Flamenco2 Ballet
Resolution 640× 480 640× 480 320× 240 640× 480 640× 480 1024× 768
Total frames 600 600 600 300 300 100
Total views 8 8 8 16 5 8
Input view
number

2 4 2 9 1 6

Reference view
number

1 1 1 1 3 3

Execution time
(sec/frame)

matching: 0.125*2 matching: 0.11*2 matching: 0.03*2 matching: 0.113*2 matching: 0.138*2 matching: 0.825*2
solver: 0.895*3 solver: 0.878*3 solver: 0.279*3 solver: 0.883*3 solver: 0.872*3 solver: 2.152*3

Fig. 2(b) also shows the corresponding matching point pairs
in the temporal direction. Our method allows for using any
matching method (dense/sparse, accurate/fast) such as the ones
in [39].

Global optimization. According to Eq. (4) and Eq. (8), the
total energy function of Eq. (5) can be further reformulated
as Eq. (11) with matrix notations. Note that in Eq. (11) all
matrices are N × N in size (N is the size of the image).
The diagonal matrix Q is determined by aforementioned three
classes of matching points and each diagonal element in it
is equal to the corresponding point’s weighting factor. For
instance, if a pixel from Gn−1(v) is chosen as a target
temporal correspondence point, we set Q(u,u) = βt and
the color G̃(u,u) = Gn−1(v) + αn(u,v). Similarly, when
calculating a pixel from the second matching class, it follows
Q(u,u) = βc and G̃(u,u) = Rn(v) + τn(u,v). To simplify
the problem, in our implementation we set the transition factor
τn(u,v) = 0, which means that our optimization attempts to
produce the same color for correspondence pairs between input
and reference views. The matrix W is also diagonal in which
all diagonal elements are βr.

Because the proposed multiview video color correction
approach is formulated as an optimization problem wherein
the total cost function E given by Eq. (11) is minimized, the
minimum of the discrete quadratic form of E is obtained by
setting dE/dGn = 0. Therefore, the optimal color correction
solution can be found by solving the following linear system:[

Q+DT
xWDx +DT

y WDy

]
Gn =

QG̃+ (DT
xWDx +DT

y WDy)An,
(12)

where DT
x and DT

y are backward discrete differentiation
operators in horizontal and vertical directions, respectively.
Eq. (12) is typically a very large linear system of equations
with discrete Laplace operators. For instance, the inhomo-
geneous Laplacian matrix in the left-hand side of Eq. (12),
Q+DT

xWDx +DT
y WDy , is 576 GB in size when the input

multiview video resolution is 1024 × 768. Nevertheless, this
Laplacian matrix (as well as the entire right-hand side) is
sparse diagonal-like and is symmetric positive definite; hence,
a sparse Laplacian matrix solution can be directly obtained by
Gaussian Elimination and Lower-Upper (LU) based Cholesky

factorization. Faster iterative algorithms, e.g., Jacobi, Gauss-
Seidel and further Preconditioned Conjugate Gradients (PCG)
are also applicable. In our implementation, we use Hierarchical
Sparsification and Compensation (HSC) [40], which has a
small operation count and wall-clock time due to an overall
low-complexity construction, dramatically reducing the matrix
condition number to efficiently solve the problem (the detailed
computational performance of our solution will be shown
in IV-D).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We performed experiments using the proposed method on a
number of multiview video sequences including ”Ballet”, ”Ob-
jects2”, ”Flamenco2”, ”Race1” and ”Rena”. The sequences
characteristics are detailed in Table I. We remark that the
experiments are carried out on various inter-camera distances.
We note also that, for the purpose of comparison, we have se-
lected the same reference views as those used in literature [7],
[11], [21].

In general, we employ the Structural Similarity (SSIM) met-
ric [41] to evaluate the structure information for the corrected
color video. The Peak Signal to Noise Ratio (PSNR) is also
used to calculate the produced color error, while in the output
result we only evaluate the corresponding points. Additionally,
we construct an evaluation model in which the color of the
entire output image is assessed using the PSNR metric. In our
implementation, all the experiments are performed in YUV
4:4:4 color space.

A. Implementation Details

For simplicity, we set the temporal weighting factor βt =
βc/5, which means that the spatial energy term has a stronger
relative importance than the temporal energy between adjacent
frames (as it will be shown, this yields sufficiently low
color fluctuations between temporally adjacent frames). By
fixing the factor βh = 1, the detailed relation between the
performance of the color correction method and the critical
parameters, βc and βr, is also investigated. As can be seen
in Fig. 3, both aforementioned parameters are independently
assigned between 0.01 and 100 respectively. The vertical axis

E = (Gn − G̃)TQ(Gn − G̃) + (DxGn −DxAn)TW (DxGn −DxAn) + (DyGn −DyAn)TW (DyGn −DyAn) (11)
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(a) PSNR (b) SSIM

Fig. 3. Critical parameters selection and color correction performance distribution (based on the Flamenco2 sequence).

indicates the PSNR and SSIM measured relative to the quality
of the reconstructed image’s color and structure information,
respectively. With the increase of βr, the gradient energy in
Eq. (5) gains more importance, so the SSIM value is higher
(see Fig. 3(b)) and the structure is more similar to that of
the original image. However, such processing affects the color
values between corresponding matching points, thus the PSNR
is reduced. Similarly, when βc increases, the SSIM slowly
decreases. For all tested sequences, we found an acceptable
trade-off by setting 5 ≤ βr ≤ 10 and 50 ≤ βc ≤ 100. Thus,
to simplify we fix βr = 6 and βc = 100 in our system.

B. Results

Visual examples produced by the proposed approach can
be seen in Fig. 4. The first two rows show color correction
result based on the Objects2 sequence. Given the input video
(Fig. 4(a)) and the reference video (Fig. 4(b)), the proposed
color correction result is given in Fig. 4(d). We can see that
the proposed method can produce the desired reference color
and is still similar to the original input. Because histogram
matching is generally used in the literature (e.g., in [7], [10],
[22]), we compare against the method introduced in [7] (see
Fig. 4(c)). In addition, Fig. 4(e) – 4(h) show the zoom-in of the
rectangle content in the first row, respectively. The histogram-
based matching clearly produces visual artifacts even in flat
color regions. In contrast, our method effectively prevents such
visual artifacts when correcting the image color.

To further illustrate the difference between above-mentioned
approaches, difference images between the original image and
the corrected image are shown for both methods in Fig. 4(i)
and Fig. 4(j) respectively. It should be pointed out that all
the difference images are normalized to the same scale and
all the pixels of the difference images are lying in the range
from 0 to Vmax. Vmax is the maximal absolute value for both
the histogram matching error and the error by the proposed
method. According to these difference images, the histogram-
based method generates sharp errors in the corrected image
while the proposed approach yields smoother and more subtle
changes.

The last two images in Fig. 4 shows another example of
the color difference for the Ballet sequence. One notices that

around the handle bar, the bright region on the curtain and
on the body of the persons, smoother and smaller mismatch-
ings are generated by the proposed approach compared to
the histogram-based method. This example shows that even
if the colors in this sequence are reasonably close across
views, because of the coarse matching by global cumula-
tive matching, the histogram-based color correction fails to
preserve local structure in multiview video color correction.
In contrast, benefiting from the structure preservation energy,
the proposed approach ensures that the output’s structural
information remains similar to that of the original image.

Fig. 5 shows another experiment, comparing our approach
with other methods on the Race1 sequence. The image of
Fig. 5(g) was provided to us by the author of [21]. Similar to
the previous results, to visualize the color differences, Vmax

is set as the maximal absolute value of all described methods
(i.e., the histogram matching, the proposed and the discrepancy
model [21]). Again, the proposed approach produces rela-
tively smoother differences than the histogram-based method.
Comparing with the discrepancy model introduced in [21],
the contour of the gradually altered sky, wheels and road
in our result is closer to the original image. One notes also
that the SSIM differences are not proportional to the visual
differences between pictures, and that even very small SSIM
differences can correspond to substantial visual differences
between pictures.

Fig. 6 shows the visual comparison with other methods
when performing color correction for all input views at the
same time. In this figure, the first row depicts five different
input views including a reference camera (highlighted with a
yellow rectangle). The images in second row are the color
corrected results obtained with histogram matching [7]. The
third row shows the corrected images obtained with the
recently published CH-GOP (Calculated Histogram using only
a Group Of Pictures) approach of Fezza et al. [11]. The
fourth row of images are obtained with our method. The
last three rows show the color difference images relative
to the original pictures in each view obtained by above-
mentioned approaches. One notices that the contours in the
color difference images are much smoother for the proposed
approach compared to histogram matching [7] and CH-GOP
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(a) input (b) reference (c) histogram method [7] (d) proposed method

(e) zoom-in of input (f) zoom-in of the reference (g) zoom-in of histogram method [7] (h) zoom-in of the proposed result

(i) color difference for method [7] (j) color difference for our method (k) Ballet with method [7] (l) Ballet with our method

Fig. 4. Color correction results. Top row: original image, reference, histogram matching result [7] and the proposed result. Second row: zoom-in results
from the top row respectively. Third row: the visualized color difference between the original image and the corrected image (the last two images are another
example for the Ballet sequence). Note that our method can effectively preserve original texture structure information without smoothing in the gradient
domain.

(a) input (b) histogram method [7] (c) discrepancy model [21] (d) proposed method

(e) reference (f) color differences for method [7] (g) color differences for method [21] (h) color differences for our method

Fig. 5. Comparison with histogram-based [7] and discrepancy model [21]. Note that the proposed approach produces a smooth result while preserving the
original structural information. The difference images of 5(f) – 5(h) are normalized in the same scale.

method [11]. This indicates a better preservation of the struc-
tural information offered by the proposed approach compared

to the reference techniques. Moreover, compared to the CH-
GOP method [11], our approach can effectively avoid both
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color variations on the ground and the strongly lighted areas
(see the top of the images in Fig. 6(f)).

For the objective evaluation, we employ the PSNR and
SSIM metrics to demonstrate the advantage of the proposed
method (see Fig. 7). Note again that the PSNR is performed for
the color of the consistent corresponding points both between
adjacent frames and between cameras. Because there is no
ground truth for multiview video color correction, it does
not make sense to simply calculate the PSNR for the whole
image. As it is clear from Fig. 7(b), the PSNR value for every
frame is higher than the PSNR obtained with the histogram-
based result. Similar PSNR results are obtained for other
sequences - see Fig. 7(a) to Fig. 7(f)), with average PSNR
gains ranging from 0.52 dB (Flamenco2 sequence) to 0.86
dB (Rena sequence). Although the point correspondences are
relatively sparse (the number in every frame depending on the
image content is between 30 and 200 points), these results
indicate that our approach provides better color consistencies
for feature points than the histogram-based method.

The SSIM values on the whole frame are calculated, as
shown in Fig. 7(g) – Fig. 7(l). It is clear from these results
that our approach effectively improves the SSIM values,
systematically outperforming the histogram-based technique.

The objective correspondence color distortion and frame-
based structure distortion metrics both clearly indicate the ef-
fectiveness of the proposed algorithm. Additionally, the SSIM
results show that the proposed method can reasonably avoid
fluctuating effects between successive frames. This is because
the proposed method does not need to specify key-frame
intervals by foreground/background detection or by making
Gaussian color distribution assumptions in temporally adjacent
frames as in [21] or perform spatio-temporal histogram calcu-
lations [7]; moreover, we do not need to estimate complicated
correction parameters, thus our method can significantly avoid
the negative cumulative effect for sudden scene changes.

C. Forward-reverse Evaluation
In multiview video currently there is no ground truth video

for color correction. In other words, since the corrected video
and the reference video originate from cameras at different
viewpoints, a certain displacement between the views, different
lighting as well as complex reflection, cause that the colors
in the cameras are not well calibrated. Conversely, the color
from one camera is difficult to be perfectly mapped to another
camera for the same reasons.

The experiments so far have evaluated the PSNR for the
color of corresponding points and the SSIM for the structure
information of the whole frame, indicating that the pro-
posed method outperforms its competitors. However, such
evaluations are probably insufficient for the color distortion
evaluation of the whole image. To address this, dedicated
evaluation methods have been introduced in the literature.
For instance, a distortion function using the gamma curve
and linear transfer is presented in [16]. However, the real
uncorrected colors between different views are difficult to be
fitted by such linear transfer based model. In contrast, here we
propose a forward-reverse evaluation approach for multiview
video color correction.

Fig. 8. Proposed forward-reverse color correction evaluation.

The block scheme of the proposed forward-reverse evalua-
tion model is shown in Fig. 8. Firstly, the input video is cor-
rected according to the video captured by the reference camera.
Ideally, in this step the target color should be determined from
the corresponding points in the reference image, while the
target structure information should remain close to the one of
the input image. Next, we reverse the correction operation and
align the color of the corrected image back according to the
original input camera view. In this loop-locked processing,
the final result can be objectively compared to the original
image using classical objective evaluation metrics such as the
PSNR and SSIM. Therefore, we perform the proposed color
correction approach to correct the video color and re-correct
it back following the forward-reverse evaluation model. We
also perform this analysis for the histogram-based method for
comparison purposes.

Fig. 9 shows the results of the forward-reverse evaluation.
Among the experiments, the average PSNRs are between
33.80 (Objects2 sequence) and 36.89 (Race1 sequence), and
the SSIMs are between 0.96 (Objects2 sequence) and 0.97
(Flamenco2 sequence). Again, the proposed approach out-
performs the histogram-based matching method in all our
experiments. Comparing with the histogram-based method, the
average PSNR gains of our approach range from 0.66 dB
(Flamenco2 sequence) to 1.34 dB (Objects2 sequence), and the
average SSIM gains range from 1.0% (Flamenco2 sequence)
to 3.2% (Objects2 sequence). These metrics also demonstrate
that the proposed approach can effectively preserve the whole
image color and texture structure, and that the color correction
result is better than that of the cumulative histogram-based
matching method.

D. Computational Complexity

We implemented our system in Microsoft Visual Studio
C++ 2010 platform combining this implementation with the
Laplacian matrix optimization tools running in MATLAB on a
high-end portable computer with 2.3GHz Quad-Core Intel-i7
CPU and 8GB memory.
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(a) input views and the reference camera (with a yellow rectangle)

(b) corrected results with histogram method [7]

(c) color correction results with CH-GOP [11]

(d) Color correction with the proposed approach

(e) color differences for histogram method [7]

(f) color differences for CH-GOP [11]

(g) color differences for the proposed approach

Fig. 6. Comparison with histogram-based [7] and CH-GOP [11] for all views. The difference images in the last three rows are normalized in the same scale.
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(a) PSNR (Objects2) (b) PSNR (Ballet) (c) PSNR (Flamenco2)

(d) PSNR (Rena) (e) PSNR (Race1) (f) PSNR (Race1-half )

(g) SSIM (Objects2) (h) SSIM (Ballet) (i) SSIM (Flamenco2)

(j) SSIM (Rena) (k) SSIM (Race1) (l) SSIM (Race1-half )

Fig. 7. Color correction result comparing with histogram-based [7]. Note that PSNR is calculated for the sparse feature matches and SSIM is for the whole
image.

The run-times of the proposed algorithm are depicted in Ta-
ble I. In our system, the computational complexity mainly lies
in our correspondence matching and in finding the Laplacian
matrix optimization solution. The correspondence matching
processing is performed not only for temporally adjacent
frames in the same view but also for synchronous frames

between input and reference views. Additionally, for each
frame we perform the Laplacian matrix optimization in every
color channel independently. For the low resolution Race1
sequence (320× 240), the time of single matching and matrix
optimization are 0.03 and 0.279 seconds, respectively, and the
total time consumption of every frame is less than 1.0s. For
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(a) PSNR (Objects2) (b) PSNR (Flamenco2) (c) PSNR (Race1)

(d) SSIM (Objects2) (e) SSIM (Flamenco2) (f) SSIM (Race1)

Fig. 9. Evaluation of the proposed approach and comparison against histogram-based matching [7]. The average PSNR gains range from 0.66 dB (Flamenco2
sequence) to 1.34 dB (Objects2 sequence), and the average SSIM gains range from 1.0% (Flamenco2 sequence) to 3.2% (Objects2 sequence)

all sequences with 640 × 480 resolution, the execution times
for matching, matrix optimization and the total time for one
frame are about 0.12s, 0.88s and 3.0s, respectively. For the
higher resolution Ballet sequence, the total computation time
per frame is about 8.3s. One concludes that the complexity is
highly dependent on the video resolution, but also the scene
content will have a direct impact since the content determines
the number of SURF matches that can be detected.

E. Discussion

It is interesting to investigate what happens if one en-
counters inaccuracies in the pairwise matching method. First
of all, we have to observe that the mismatched points can
be effectively filtered out by our approach (see Fig. 2(c)).
Thus, the influence of such outliers is significantly reduced.
Secondly, after filtering, the set of feature points is relatively
sparse, hence, eventual pairwise matching inaccuracies have
a small relative importance in the overall cost function (Eq.
(5)). To assess this effect, we have performed an experiment
by introducing random errors in inter-view scene mapping.
We randomly select a given subset of inter-view matching
pairs and we modify the locations of the selected points in the
target view by adding small random offsets; the distribution of
this noise component is a truncated Gaussian with a variance
of up to 1 pixel, and we set the maximum offset to be of
2 pixels. This noise component substantially influences the
PSNR on the feature points, with an average decrease of
approximately 4 dBs, but the SSIM on the global frame is
only marginally affected, with an average decrease of only
0.01%. It is important to observe, however, that this is due to
the use of a sparse feature point set. Increasing the number of
feature points (up to a dense set) using a different matching
technique - e.g. optical flow - increases the relative importance
of feature-point matching in the overall cost function. The

lack of accurate matching, simulated here by the use of noise
perturbation, is also expected to significantly affect the results.
Adopting dense and accurate matching techniques in our
approach (for instance matching based on multiple previous
frames) is left as topic of future investigation.

The proposed color correction approach can be extended
to incorporate more complicated reference view selection
models. Some more complicated selection of the reference
view could be introduced by considering all captured views. To
handle them using our optimization solution, the target texture
structure consistency energy and the target color consistency
energy for the temporal correspondence pairs remain the same
as in Eq. 5, while the spatial color consistency energy should
be adjusted to match to the desired camera view and baseline
distance between reference and target cameras.

Limitations. Although the proposed method enables high
quality color correction, there are a few issues that should
be further investigated. First, as can be seen in the visualized
difference figure, the gradient errors generated by our approach
frequently happen around the border of the output image.
This is because we need to calculate in every pixel first
derivatives of the gradient and around the border some pixels’
inaccurate gradient will result in the propagation of errors to
their neighbors by the optimization solution. This drawback
would be fixed by extrapolating (e.g., mirror padding) and
cropping the image before and after the color correction re-
spectively. In addition, we take into account the temporal color
transition according to the original color difference between
successive frames from the input camera. Furthermore, we
do not consider in our implementation the transition term
between different cameras. By introducing more complicated
models (e.g., light field or reflection analysis) and setting
appropriate spatio-temporal color transition terms in our data
term (Eq. (8)), the correction result can be expected to
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improve even more, in particular for large baselines between
reference and target cameras. Robustly adapting our approach
in some extreme situations (such as shot transitions) also
needs more complicated content-aware modeling. Finally, our
implementation is currently not optimized for speed as it runs
on a single thread. Performing the computations on chroma
subsampled data and following a multi-scale approach could
greatly accelerate our system.

V. CONCLUSIONS

This paper presents a novel multiview video color correction
approach based on spatio-temporal global energy optimization.
The proposed method aims at maintaining the original image
gradient consistency and providing spatio-temporal color cor-
respondence preservation, and achieves these goals by solving
a Laplacian matrix optimization problem. Experiments show
that the proposed multiview color correction algorithm can
effectively correct scene color while preserving the structure
information for multiple cameras.

The presented work suggests some avenues for future
research. For example, we would like to investigate some
improved prediction schemes for multiview video coding sys-
tems in order to further improve the compression performance
in multiview video via color correction. Several techniques
making use of histogram matching have investigated this idea
in the past [7]; it would also be desirable to improve the
compression performance in multiview video coding based on
the proposed color correction approach. This is left as topic
of further investigation.

ACKNOWLEDGMENTS

The authors would like to thank the editor and anonymous
reviewers for their insightful comments in improving the
paper. Many thanks to S.A. Fezza, M.-C. Larabi and F. Shao
for sharing their images of corresponding papers. This work
was supported by the iMinds visualization research program
(HIVIZ), iMinds vzw and IWT in the context of the ASPRO+
project.

REFERENCES

[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and C. Zhang,
“Multiview imaging and 3DTV,” IEEE Signal Process. Mag., vol. 24,
no. 6, pp. 10–21, 2007.

[2] A. Vetro, T. Wiegand, and G. J. Sullivan, “Overview of the stereo
and multiview video coding extensions of the H. 264/MPEG-4 AVC
standard,” Proc. IEEE, vol. 99, no. 4, pp. 626–642, 2011.

[3] H.-Y. Shum, S.-C. Chan, and S. B. Kang, Image-Based Rendering.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[4] M. Pölönen, J. Hakala, R. Bilcu, T. Jävenpää, J. Häkkinen, and
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