
 PERFORMANCE OPTIMIZATIONS FOR PATCHMATCH-BASED PIXEL-
LEVEL MULTIVIEW INPAINTING

Shao-Ping Lu, Beerend Ceulemans, Adrian Munteanu, Peter Schelkens

Department of Electronics and Informatics,

Vrije Universiteit Brussel
Pleinlaan 2, Brussels, Belgium

Department of Future Media and Imaging,
iMinds V. Z. W.

G. Crommenlaan 8, Ghent, Belgium

e-mail: {splu, bceulema, acmuntea, pschelke}@etro.vub.ac.be

 ABSTRACT

As 3D content is becoming ubiquitous in today’s media
landscape, there is a rising interest for 3D displays that do
not demand wearing special headgear in order to experience
the 3D effect. Autostereoscopic displays realize this by
providing multiple different views of the same scene. It is
however unfeasible to record, store or transmit the amount
of data that such displays require. Therefore there is a strong
need for real-time solutions that can generate multiple extra
viewpoints from a limited set of originally recorded views.
The main difficulty in current solutions is that the
synthesized views contain disocclusion holes where the
pixel values are unknown. In order to seamlessly fill-in
these holes, inpainting techniques are being used. In this
work we consider a depth-based pixel-level inpainting
system for multiview video. The employed technique
operates in a multi-scale fashion, fills in the disocclusion
holes on a pixel-per-pixel basis and computes approximate
Nearest Neighbor Fields (NNF) to identify pixel
correspondences. To this end, we employ a multi-scale
variation on the well-known PatchMatch algorithm followed
by a refinement step to escape from local minima in the
matching-cost function. In this paper we analyze the
performance of different cost functions and search methods
within our existing inpainting framework.

Index Terms— view synthesis, multiview inpainting,
PatchMatch.

 1. INTRODUCTION

3D video applications are becoming commonplace as the
technology of 3D acquisition devices such as stereo cameras
and depth cameras is maturing. The stereo format where
users are required to wear special glasses is already widely
adopted by both digital cinemas and broadcasting
companies. The 3D experience offered by this type of 3D
displays is however very limited in the sense that users
cannot experience the motion parallax effect which is
needed for a genuine 3D feel. Therefore many experts
believe that the future of 3D lies in display devices that can

offer this motion parallax and moreover without requiring
users to wear any special headgear. This is the idea behind
the so-called autostereoscopic displays [1]. Such displays
are able to show different content, depending on the position
of a viewer relative to the screen. This way, they can
accommodate the motion parallax effect, thus providing a
more realistic 3D feeling compared to simple stereo
solutions.

In order to display high quality 3D content by making
use of multiview video, a sufficient amount of different
views needs to be available for the display. If the number of
views is too low, users that move with respect to the screen
will notice harsh discontinuous view changes instead of
smooth natural looking transitions. However, in order to
provide such smooth transitions, a large number of views
are typically needed. This imposes an enormous burden on
the acquisition, storage and transmission of multiview video
data.

To reduce the amount of separate video streams that
needs to be recorded and transmitted, one needs to
synthesize many additional viewpoints based on a limited
set of originally recorded views. This problem is already
well-studied and resulted in so-called depth-based image
rendering (DIBR) [2] techniques. The resulting synthesized
images after 3D warping contain holes, corresponding to
pixels of which the value is unknown. These holes originate
either from inaccuracies in the process – the real 3D scene is
continuous while its digital recordings are discrete – or from
occlusions as parts of the scene that were not visible in the
original view may become visible in the synthetic
viewpoint. These holes need to be filled-in seamlessly so
that the resulting synthetic frames look natural; furthermore,
since playback of video should happen instantaneously,
view synthesis should be performed in real-time.
The problem of filling in missing values in images is called
inpainting and numerous such methods have been proposed
in the literature in the past – e.g. [3-12]. Among them one
distinguishes the class of so-called exemplar-based or
texture-based methods [9, 12]. In this paper, we adopt our
depth-based pixel-level inpainting approach for multiview
video, originally proposed in [8].

Fig. 1. Schema of our depth-based pixel-level inpainting method [8].

The considered technique operates in a multi-scale fashion
and computes NNFs in order to identify matching
candidates for each pixel to be inpainted. In this work, we
propose an improvement on our earlier inpainting method
[8] by considering additional spatial constraints as well as
different search strategies in the approximate NNF
computation.

The paper is structured as follows. In section 2, we give
an overview of our inpainting method. Section 3 will
explain the new additions to this framework and in section 4
we report the experimental results. The conclusions of our
work are drawn in section 5.

2. INPAINTING METHOD

Fig. 1 depicts a schematic overview of our inpainting
method of [8]. The first step comprises a classification stage
where holes are declared to be either simple holes or a
disocclusion holes simply by thresholding their surface.
Simple holes are then directly inpainted, as explained next.
A similar distinction is made in [13] where small holes
coming from z-dimensional motion are interpolated while
disocclusion holes are not addressed.

2.1. Pixel-level inpainting

To inpaint holes in an image, the inpainting algorithm needs
to solve the problems of both structure propagation and
preservation of local textures. Within the image I, we denote
the holes and their boundaries as Ω and ∂Ω ,
respectively. We will then search the known region

IΦ = − Ω for information to fill in the holes. The
inpainting algorithm then iteratively fills in the hole
boundary until the entire hole is inpainted. For any pixel
m∈∂Ω on the occlusion boundary and for a patch mψ

centered around m , the optimal candidate is the pixel n
that is the center of a patch nψ , identified as:

 argmin (),n m n
n

Sψ ψ ψ
∈Φ

= (1)

where ,()S ⋅ ⋅ is a measure of similarity between two
equally sized image patches. In our earlier work [8], this
similarity measure was simply the Sum of Squared
Differences (SSD) in *CIE Lab color space. In this work,
we adopt the Sum of Absolute Differences (SAD):

1

(,) () ()
m m

m n m
k

n
K

S k k
K ψψ

ψ ψ ψ ψ
∈

= − , (2)

where
m

Kψ is the set of pixel locations in mψ where the
value is known and

m
Kψ denotes the size of this set.

Note that our algorithm uses an exemplar-based
approach to find plausible information to fill the holes, but
performs the actual inpainting in a pixel-per-pixel fashion.
This way, the algorithm will not suffer from artifacts
coming from overlapping patches.

To find the optimal candidate patch to match the already
known region around m , we employ a variation on the
approximate NNF matching algorithm PatchMatch [7]. The
algorithm is initialized with random candidates for each
pixel and then proceeds iteratively using both candidate
propagation and search to improve its current matches.

The candidate propagation step is built on the
observation that if the best candidate for a pixel at location
(,)u v is found, the best candidates for its neighbors
(1,)u v+ and (, 1)u v + are likely to be also the neighbors
of the best match for (, v)u . Refining the random
initialization only using this principle is prone to getting
trapped in a local minimum. Therefore [7] also includes a
random search step to avoid this effect.

2.2. Multi-scale disocclusion inpainting

If the simple holes are denoted by hΩ , the remaining
disocclusion holes are given by d hΩ = Ω − Ω . To inpaint
these, we construct an image pyramid:

 ()I k
d

k

P − Ω ↓= (3)

where {0,1, ,S 1}k = − and k↓ denotes downsampling
by a factor k , preceded by low-pass filtering to prevent
aliasing. The pyramid consists of S resolution levels
obtained by successive filtering and downsampling. Note
that the simple holes in these images are already inpainted
and only the disocclusion holes remain. We employ a multi-
scale approach in order to avoid that our approximate NNF
search gets trapped in a local minimum. In our earlier work
[8] we showed that this approach indeed improves the visual
performance compared to the single-scale version of our
algorithm.

First the coarsest image 1SP − in the pyramid is
inpainted using our pixel-level inpainting method, resulting
in an image 1SP −′ . If we upsample this image we obtain a
prediction for the inpainted 2SP − image. We thus exploit
this information in the true inpainting of 2SP − . This process
is iteratively repeated until we reach the finest scale 0P
which is the output of our system.

3. COST FUNCTION

Note that equation (2) only considers the known pixels
inside the patch. In the upsampled image there are no more
unknown values. However, since this image is only a
prediction of the actual one, we should control the degree of
trust we invest in it; therefore, we adapt the SAD similarity
measure in the following manner:

()

()

(,) () ()

(

1

) ()

m

m

s
m n m n

m k K

s
m n

k U

S k k

k k

ψ

ψ

ψ ψ ψ ψ
ψ

γ ψ ψ

∈

∈

=

−

−

 +

+

 (4)

where ()m m
K Uψ ψ denotes the set of pixel locations where

the value is known (unknown).
(s)γ expresses the

confidence we have in the upsampled inpainting result of
the previous scale. Note that this makes the similarity
measure scale dependent. When we inpaint the coarsest
image in the pyramid and propagate this result to the next
scale we cannot have too much confidence in these values.
However, once we have refined this guess to 2SP −′ we can
have a little more confidence in the inpainted values. We
therefore believe that the confidence values should increase
as the algorithm progresses towards finer scales.

Furthermore, in multi-view inpainting there are some
special constraints that can be built in the algorithm in order

to guide the NNF search. For instance, compared to
traditional image inpainting, multi-view inpainting is not
limited to only use color information but can also consider
scene depth information as input information, so we can
further exploit the scene depth maps to refine the filling
candidates. Furthermore, the disocclusion is normally
caused by camera’s horizontal shifting or because of
foreground motion. The hole to be filled is more likely to
belong to the background plane. Therefore, we introduce
three additional factors, to which we refer as local depth
coherency constraint, threshold constraint of reference
distance and texture continuity factor. The cost function
given by equation (4) is now extended to:

(s) '

()(s) () ()

(,)

(,) () (,) ()

m n

s
m n ud

s s
c

S

S n m n m

ψ ψ

ψ ψ δ δ δ= ⋅

=

⋅ ⋅
 (5)

In this equation, () ()s
d nδ is a local depth coherency indicator

given by:

 min

max min

min
()

()

1 if

()

otherw

(

i e

)

s

s s

s s

s

d

d

s
d d

d

s

n

n dd

n

e

δ −
−

<
=

 (6)

where min
sd and max

sd are the minimal and maximal depth
values in the neighbor region of current hole.

() (,)s
u m nδ is a penalty to avoid choosing a candidate too

far away, and the value is related to the Euclidean distance
between the current position to be filled and the candidate
pixel:

min

() min

(,)

1 if
(,)

otherw

)

i e

(

s
ss

s

l

s

u m l

s

n

l
n

n l
m

e
δ

−
=

<

 (7)

where (,)sl m n is the Euclidean distance between current
point and the candidate, min

sl is a fixed parameter and we
set it as min 30sl s= .

() ()s
c mδ is the texture continuity factor to produce

continuous textures and we define it as:

 () () ()

(
() 1

)

ss
s

c s

m V mV

m
m

V
δ + −= (8)

where ()sV m is the offset between the current position m
and its best candidate, ()

s
V m is the mean offset of

neighboring pixels which are inside the search window
centered at position m . Note that such neighboring pixels
have been inpainted in the current iteration and they are seen
as known pixels for the current pixel.

4. SEARCH METHODS

In contrast to the original PatchMatch [7] algorithm, we
perform deterministic rather than random searches to escape
from local minima. PatchMatch iterates candidate
propagation steps interleaved with random search steps. The

candidate propagation steps select a candidate patch for a
pixel based on the candidates that were already found for its
neighbors. The random search step then places a square
window of size d d× around the center of the obtained
candidate and randomly searches this window by iteratively
choosing one random pixel followed by reducing the
window size until it reaches the size of a single pixel.

In our implementation we experiment with different
search methodologies. More precisely, we employ
logarithmic search, diamond search and full search in 2
dimensions. These search strategies are depicted in Fig. 2.
Suppose that the candidate propagation step of PatchMatch
yields a candidate patch centered in the pixel indicated by x
in Fig. 2. This candidate is not necessarily the best match so
it should be refined by considering other pixels in its
vicinity. We center a search range with a certain radius d
on x . Each pixel in this search range may be a better center
for the best match, but considering them all is
computationally expensive.

The circles represent the pixels that are evaluated by a
particular method. In a diamond search of Fig. 2(a) only
four pixels are evaluated in the first search step. The best of
those four is selected and the neighbors of that pixel are
evaluated. This is repeated iteratively. The logarithmic
search evaluates all pixels that lie on the logarithmically
spaced grid, as depicted in Fig. 2(b). We note that the
original random search of PatchMatch is actually a special
case of logarithmic search: for each “logarithmic radius”
around x , illustrated by the dashed lines in Fig. 2(b),
PatchMatch randomly selects a single pixel where the
quality of the match is evaluated.

5. EXPERIMENTAL RESULTS

To validate the efficiency of different search strategies and
the proposed matching function, we perform experiments on
an MPEG reference MVD sequence, “Newspaper”, in which
the baseline between two adjacent cameras is 65 mm. In
our experiments the input video is from camera 6 and the
output is camera 4, which means the synthesized result is
with twice the regular baseline.

Firstly, experiments with different search strategies are
performed in the proposed inpainting framework. As
mentioned in Section 2, a candidate refinement search is
introduced in order to escape from local minima after
candidate propagation, and it is also one of the heaviest
computing parts in the proposed algorithm. Here we employ
Peak Signal-to-noise Ratio (PSNR), Structural Similarity
(SSIM) [14] and Multi-scale Structural Similarity (MS-
SSIM) [15] to evaluate the inpainting result. These objective
metrics are conventionally being used in order to quantify
view synthesis performance in the literature, e.g. [5]. As
shown in Fig. 3, in general, for every search strategy the
final synthesis result improves as search range increases.
For a given search range, the 2D full search can produce
superior results compared to the other techniques because it

(a) 2D diamond search

(b) 2D logarithmic search

(d) 2D full search

Fig. 2. Different search strategies.

is more likely to find the best candidate.

Nevertheless, 2D full search is very slow because of the
high number of pixels that need to be checked. 2D
logarithmic search gets the lowest objective quality, one
reason is that this search would be easily trapped into local
minimal values. Compared to 2D logarithmic search, 2D
diamond search can achieve good balance between the
computation cost and final inpainting result.

We also compare the proposed algorithm with our
approach of [8] (Fig. 4 and 5). As shown in Fig. 4, the
proposed algorithm can produce smoother results over time
with higher and more stable PSNR values. Moreover, the
MS-SSIM indicates that our proposed method is more
effective to produce continuous structure textures.
Regarding the subjective quality, the inpainting result in Fig.
5 shows that our algorithm can produce a better synthesis
result than our previous method proposed in [8]. We note
that our previous work [8] yields competitive results against
reference techniques in the literature [4, 7, 9, 16].

(a) PSNR result

(a) PSNR result

(b) SSIM result (b) SSIM result

(c) MS-SSIM result (c) MS-SSIM result

Fig. 3. Objective performance calculation by different
search strategies and search ranges.

Fig. 4. Objective performance comparison of the proposed
method and the reference technique of [8].

(a) Original occlusion regions.

(b) Inpainting result obtained with MPEG VSRS 3.5 [17].

(c) Inpainting result obtained with [8].

(d) The proposed algorithm.

Fig. 5. Inpainting results obtained with the proposed method and the reference techniques of [8] and [17].

6. CONCLUSIONS

We have presented a new approach for performing depth-
based inpainting in multiview video. Our solution performs
PatchMatch-based multilevel pixel-level inpainting
employing candidates search and patch matching. An
improved similarity measure for patch matching is
introduced. Different search strategies and search ranges
have also been investigated in the proposed framework.
Experimental results reporting both subjective and objective
evaluations show that the proposed inpainting algorithm can
efficiently generate stable synthesis results.

ACKNOWLEDGEMENT

This work was supported by iMinds vzw and IWT in the
context of the ASPRO+ project.

7. REFERENCES

[1] N. A. Dodgson, "Autostereoscopic 3D displays,"
Computer, vol. 38, no. 8, pp. 31-36, 2005.

[2] C. Fehn, "Depth-image-based rendering (DIBR),
compression, and transmission for a new approach on
3D-TV," Proceedings of Electronic Imaging, pp. 93-
104, 2004.

[3] I. Daribo and B. Pesquet-Popescu, "Depth-aided image
inpainting for novel view synthesis," Proceedings of
IEEE International Workshop on Multimedia Signal
Processing, MMSP, pp. 167-170, 2010.

[4] J. Gautier, O. Le Meur, and C. Guillemot, "Depth-
based image completion for view synthesis," 3DTV
Conference: The True Vision-Capture, Transmission
and Display of 3D Video, pp. 1-4, 2011.

[5] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman,
P. Merkle, K. Muller, and T. Wiegand, "Depth image-
based rendering with advanced texture synthesis for

3-D video," IEEE Transactions on Multimedia, vol. 13,
no. 3, pp. 453-465, 2011.

[6] V. Jantet, C. Guillemot, and L. Morin, "Joint
projection filling method for occlusion handling in
Depth-Image-Based Rendering," 3D Research, vol. 2,
no. 4, pp. 1-13, 2011.

[7] C. Barnes, E. Shechtman, A. Finkelstein, and D.
Goldman, "PatchMatch: a randomized correspondence
algorithm for structural image editing," ACM
Transactions on Graphics, vol. 28, no. 3, pp. 24, 2009,
2009.

[8] S. Lu, J. Hanca, A. Munteanu, and P. Schelkens,
"Depth-based view synthesis using pixel-level image
inpainting," IEEE International Conference on Digital
Signal Processing, DSP, pp. 1-6, 2013.

[9] A. Criminisi, P. Pérez, and K. Toyama, "Region filling
and object removal by exemplar-based image
inpainting," IEEE Transactions on Image Processing,
vol. 13, no. 9, pp. 1200-1212, 2004.

[10] I. Ahn and C. Kim, "Depth-based disocclusion filling
for virtual view synthesis," Proceedings of IEEE
International Conference on Multimedia & Expo,
ICME, pp. 109-114, 2012.

[11] S. Reel, G. Cheung, P. Wong, and L. S. Dooley, "Joint
texture-depth pixel inpainting of disocclusion holes in
virtual view synthesis," in APSIPA ASC. Kaohsiung,
Taiwan, 2013.

[12] O. Le Meur, J. Gautier, and C. Guillemot, "Exemplar-
based inpainting based on local geometry," IEEE
International Conference on Image Processing, ICIP,
2011.

[13] Y. Mao, G. Cheung, A. Ortega, and Y. Ji, "Expansion
Hole Filling in Depth-Image-Based Rendering using
Graph-based Interpolation," IEEE International
Conference on Acoustics, Speech and Signal
Processing, ICASSP, Vancouver, Canada, 2013.

[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli, "Image quality assessment: From error
visibility to structural similarity," IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600-612,
2004.

[15] Z. Wang, E. P. Simoncelli, and A. C. Bovik,
"Multiscale structural similarity for image quality
assessment," Thirty-Seventh Asilomar Conference on
Signals, Systems and Computers, vol. 2, pp. 1398-
1402, 2003.

[16] I. Daribo and B. Pesquet-Popescu, "Depth-aided image
inpainting for novel view synthesis," IEEE
International Workshop on Multimedia Signal
Processing, MMSP, pp. 167-170, 2010.

[17] C. Lee and Y. S. Ho, "View Synthesis Reference
Software (VSRS) 3.5," ISO/IEC JTC1/SC29/WG11,
MPEG2008/M15851, 2008.

