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 ABSTRACT 

As 3D content is becoming ubiquitous in today’s media 
landscape, there is a rising interest for 3D displays that do 
not demand wearing special headgear in order to experience 
the 3D effect. Autostereoscopic displays realize this by 
providing multiple different views of the same scene. It is 
however unfeasible to record, store or transmit the amount 
of data that such displays require. Therefore there is a strong 
need for real-time solutions that can generate multiple extra 
viewpoints from a limited set of originally recorded views. 
The main difficulty in current solutions is that the 
synthesized views contain disocclusion holes where the 
pixel values are unknown. In order to seamlessly fill-in 
these holes, inpainting techniques are being used. In this 
work we consider a depth-based pixel-level inpainting 
system for multiview video. The employed technique 
operates in a multi-scale fashion, fills in the disocclusion 
holes on a pixel-per-pixel basis and computes approximate 
Nearest Neighbor Fields (NNF) to identify pixel 
correspondences. To this end, we employ a multi-scale 
variation on the well-known PatchMatch algorithm followed 
by a refinement step to escape from local minima in the 
matching-cost function. In this paper we analyze the 
performance of different cost functions and search methods 
within our existing inpainting framework. 
 

Index Terms— view synthesis, multiview inpainting, 
PatchMatch. 

 1. INTRODUCTION 

3D video applications are becoming commonplace as the 
technology of 3D acquisition devices such as stereo cameras 
and depth cameras is maturing. The stereo format where 
users are required to wear special glasses is already widely 
adopted by both digital cinemas and broadcasting 
companies. The 3D experience offered by this type of 3D 
displays is however very limited in the sense that users 
cannot experience the motion parallax effect which is 
needed for a genuine 3D feel. Therefore many experts 
believe that the future of 3D lies in display devices that can 

offer this motion parallax and moreover without requiring 
users to wear any special headgear. This is the idea behind 
the so-called autostereoscopic displays [1]. Such displays 
are able to show different content, depending on the position 
of a viewer relative to the screen. This way, they can 
accommodate the motion parallax effect, thus providing a 
more realistic 3D feeling compared to simple stereo 
solutions. 

In order to display high quality 3D content by making 
use of multiview video, a sufficient amount of different 
views needs to be available for the display. If the number of 
views is too low, users that move with respect to the screen 
will notice harsh discontinuous view changes instead of 
smooth natural looking transitions. However, in order to 
provide such smooth transitions, a large number of views 
are typically needed. This imposes an enormous burden on 
the acquisition, storage and transmission of multiview video 
data. 

To reduce the amount of separate video streams that 
needs to be recorded and transmitted, one needs to 
synthesize many additional viewpoints based on a limited 
set of originally recorded views. This problem is already 
well-studied and resulted in so-called depth-based image 
rendering (DIBR) [2] techniques. The resulting synthesized 
images after 3D warping contain holes, corresponding to 
pixels of which the value is unknown. These holes originate 
either from inaccuracies in the process – the real 3D scene is 
continuous while its digital recordings are discrete – or from 
occlusions as parts of the scene that were not visible in the 
original view may become visible in the synthetic 
viewpoint. These holes need to be filled-in seamlessly so 
that the resulting synthetic frames look natural; furthermore, 
since playback of video should happen instantaneously, 
view synthesis should be performed in real-time. 
The problem of filling in missing values in images is called 
inpainting and numerous such methods have been proposed 
in the literature in the past – e.g. [3-12]. Among them one 
distinguishes the class of so-called exemplar-based or 
texture-based methods [9, 12]. In this paper, we adopt our 
depth-based pixel-level inpainting approach for multiview 
video, originally proposed in [8].



 

Fig. 1. Schema of our depth-based pixel-level inpainting method [8]. 

The considered technique operates in a multi-scale fashion 
and computes NNFs in order to identify matching 
candidates for each pixel to be inpainted. In this work, we 
propose an improvement on our earlier inpainting method 
[8] by considering additional spatial constraints as well as 
different search strategies in the approximate NNF 
computation. 

The paper is structured as follows. In section 2, we give 
an overview of our inpainting method. Section 3 will 
explain the new additions to this framework and in section 4 
we report the experimental results. The conclusions of our 
work are drawn in section 5. 
 

2. INPAINTING METHOD 

Fig. 1 depicts a schematic overview of our inpainting 
method of [8]. The first step comprises a classification stage 
where holes are declared to be either simple holes or a 
disocclusion holes simply by thresholding their surface. 
Simple holes are then directly inpainted, as explained next. 
A similar distinction is made in [13] where small holes 
coming from z-dimensional motion are interpolated while 
disocclusion holes are not addressed. 

2.1. Pixel-level inpainting 

To inpaint holes in an image, the inpainting algorithm needs 
to solve the problems of both structure propagation and 
preservation of local textures. Within the image I, we denote 
the holes and their boundaries as Ω  and ∂Ω , 
respectively. We will then search the known region 

IΦ = − Ω  for information to fill in the holes. The 
inpainting algorithm then iteratively fills in the hole 
boundary until the entire hole is inpainted. For any pixel 
m∈∂Ω  on the occlusion boundary and for a patch mψ  

centered around m , the optimal candidate is the pixel n  
that is the center of a patch nψ , identified as: 

 argmin ( ),n m n
n

Sψ ψ ψ
∈Φ

=   (1) 

where ,( )S ⋅ ⋅  is a measure of similarity between two 
equally sized image patches. In our earlier work [8], this 
similarity measure was simply the Sum of Squared 
Differences (SSD) in *CIE Lab  color space. In this work, 
we adopt the Sum of Absolute Differences (SAD): 
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where 
m

Kψ  is the set of pixel locations in mψ  where the 
value is known and 

m
Kψ  denotes the size of this set. 

Note that our algorithm uses an exemplar-based 
approach to find plausible information to fill the holes, but 
performs the actual inpainting in a pixel-per-pixel fashion. 
This way, the algorithm will not suffer from artifacts 
coming from overlapping patches. 

To find the optimal candidate patch to match the already 
known region around m , we employ a variation on the 
approximate NNF matching algorithm PatchMatch [7]. The 
algorithm is initialized with random candidates for each 
pixel and then proceeds iteratively using both candidate 
propagation and search to improve its current matches. 

The candidate propagation step is built on the 
observation that if the best candidate for a pixel at location
( , )u v  is found, the best candidates for its neighbors
( 1, )u v+  and ( , 1)u v +  are likely to be also the neighbors 
of the best match for ( , v)u . Refining the random 
initialization only using this principle is prone to getting 
trapped in a local minimum. Therefore [7] also includes a 
random search step to avoid this effect. 



2.2. Multi-scale disocclusion inpainting 

If the simple holes are denoted by hΩ , the remaining 
disocclusion holes are given by d hΩ = Ω − Ω . To inpaint 
these, we construct an image pyramid: 

 ( )I k
d

k

P − Ω ↓=   (3) 

where {0,1, ,S 1}k = −  and k↓  denotes downsampling 
by a factor k , preceded by low-pass filtering to prevent 
aliasing. The pyramid consists of S  resolution levels 
obtained by successive filtering and downsampling. Note 
that the simple holes in these images are already inpainted 
and only the disocclusion holes remain. We employ a multi-
scale approach in order to avoid that our approximate NNF 
search gets trapped in a local minimum. In our earlier work 
[8] we showed that this approach indeed improves the visual 
performance compared to the single-scale version of our 
algorithm. 

First the coarsest image 1SP −  in the pyramid is 
inpainted using our pixel-level inpainting method, resulting 
in an image 1SP −′ . If we upsample this image we obtain a 
prediction for the inpainted 2SP −  image. We thus exploit 
this information in the true inpainting of 2SP − . This process 
is iteratively repeated until we reach the finest scale 0P  
which is the output of our system. 

3. COST FUNCTION 

Note that equation (2) only considers the known pixels 
inside the patch. In the upsampled image there are no more 
unknown values. However, since this image is only a 
prediction of the actual one, we should control the degree of 
trust we invest in it; therefore, we adapt the SAD similarity 
measure in the following manner: 
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where ( )m m
K Uψ ψ  denotes the set of pixel locations where 

the value is known (unknown). 
(s)γ  expresses the 

confidence we have in the upsampled inpainting result of 
the previous scale. Note that this makes the similarity 
measure scale dependent. When we inpaint the coarsest 
image in the pyramid and propagate this result to the next 
scale we cannot have too much confidence in these values. 
However, once we have refined this guess to 2SP −′  we can 
have a little more confidence in the inpainted values. We 
therefore believe that the confidence values should increase 
as the algorithm progresses towards finer scales. 

Furthermore, in multi-view inpainting there are some 
special constraints that can be built in the algorithm in order 

to guide the NNF search. For instance, compared to 
traditional image inpainting, multi-view inpainting is not 
limited to only use color information but can also consider 
scene depth information as input information, so we can 
further exploit the scene depth maps to refine the filling 
candidates. Furthermore, the disocclusion is normally 
caused by camera’s horizontal shifting or because of 
foreground motion. The hole to be filled is more likely to 
belong to the background plane. Therefore, we introduce 
three additional factors, to which we refer as local depth 
coherency constraint, threshold constraint of reference 
distance and texture continuity factor. The cost function 
given by equation (4) is now extended to: 
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In this equation, ( ) ( )s
d nδ is a local depth coherency indicator 

given by: 
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where min
sd and max

sd  are the minimal and maximal depth 
values in the neighbor region of current hole. 

( ) ( , )s
u m nδ  is a penalty to avoid choosing a candidate too 

far away, and the value is related to the Euclidean distance 
between the current position to be filled and the candidate 
pixel: 
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where ( , )sl m n  is the Euclidean distance between current 
point and the candidate, min

sl  is a fixed parameter and we 
set it as min 30sl s= . 

( ) ( )s
c mδ  is the texture continuity factor to produce 

continuous textures and we define it as: 

 ( ) ( ) ( )
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where ( )sV m  is the offset between the current position m  
and its best candidate, ( )

s
V m  is the mean offset of 

neighboring pixels which are inside the search window 
centered at position m . Note that such neighboring pixels 
have been inpainted in the current iteration and they are seen 
as known pixels for the current pixel. 

4. SEARCH METHODS 

In contrast to the original PatchMatch [7] algorithm, we 
perform deterministic rather than random searches to escape 
from local minima. PatchMatch iterates candidate 
propagation steps interleaved with random search steps. The 



candidate propagation steps select a candidate patch for a 
pixel based on the candidates that were already found for its 
neighbors. The random search step then places a square 
window of size d d×  around the center of the obtained 
candidate and randomly searches this window by iteratively 
choosing one random pixel followed by reducing the 
window size until it reaches the size of a single pixel. 

In our implementation we experiment with different 
search methodologies. More precisely, we employ 
logarithmic search, diamond search and full search in 2 
dimensions. These search strategies are depicted in Fig. 2. 
Suppose that the candidate propagation step of PatchMatch 
yields a candidate patch centered in the pixel indicated by x  
in Fig. 2. This candidate is not necessarily the best match so 
it should be refined by considering other pixels in its 
vicinity. We center a search range with a certain radius d  
on x . Each pixel in this search range may be a better center 
for the best match, but considering them all is 
computationally expensive.  

The circles represent the pixels that are evaluated by a 
particular method. In a diamond search of Fig. 2(a) only 
four pixels are evaluated in the first search step. The best of 
those four is selected and the neighbors of that pixel are 
evaluated. This is repeated iteratively. The logarithmic 
search evaluates all pixels that lie on the logarithmically 
spaced grid, as depicted in Fig. 2(b). We note that the 
original random search of PatchMatch is actually a special 
case of logarithmic search: for each “logarithmic radius” 
around x , illustrated by the dashed lines in Fig. 2(b), 
PatchMatch randomly selects a single pixel where the 
quality of the match is evaluated. 

5. EXPERIMENTAL RESULTS 

To validate the efficiency of different search strategies and 
the proposed matching function, we perform experiments on 
an MPEG reference MVD sequence, “Newspaper”, in which 
the baseline between two adjacent cameras is 65 mm. In 
our experiments the input video is from camera 6 and the 
output is camera 4, which means the synthesized result is 
with twice the regular baseline. 

Firstly, experiments with different search strategies are 
performed in the proposed inpainting framework. As 
mentioned in Section 2, a candidate refinement search is 
introduced in order to escape from local minima after 
candidate propagation, and it is also one of the heaviest 
computing parts in the proposed algorithm. Here we employ 
Peak Signal-to-noise Ratio (PSNR), Structural Similarity 
(SSIM) [14] and Multi-scale Structural Similarity (MS-
SSIM) [15] to evaluate the inpainting result. These objective 
metrics are conventionally being used in order to quantify 
view synthesis performance in the literature, e.g. [5]. As 
shown in Fig. 3, in general, for every search strategy the 
final synthesis result improves as search range increases. 
For a given search range, the 2D full search can produce 
superior results compared to the other techniques because it  

 
(a) 2D diamond search 

 

 
(b) 2D logarithmic search 

 

 
(d) 2D full search 

 

Fig. 2. Different search strategies.

is more likely to find the best candidate.  

Nevertheless, 2D full search is very slow because of the 
high number of pixels that need to be checked. 2D 
logarithmic search gets the lowest objective quality, one 
reason is that this search would be easily trapped into local 
minimal values. Compared to 2D logarithmic search, 2D 
diamond search can achieve good balance between the 
computation cost and final inpainting result. 

We also compare the proposed algorithm with our 
approach of [8] (Fig. 4 and 5). As shown in Fig. 4, the 
proposed algorithm can produce smoother results over time 
with higher and more stable PSNR values. Moreover, the 
MS-SSIM indicates that our proposed method is more 
effective to produce continuous structure textures. 
Regarding the subjective quality, the inpainting result in Fig. 
5 shows that our algorithm can produce a better synthesis 
result than our previous method proposed in [8]. We note 
that our previous work [8] yields competitive results against 
reference techniques in the literature [4, 7, 9, 16].  



 

(a) PSNR result 

 

(a) PSNR result 

 

(b) SSIM result (b) SSIM result  

 

(c) MS-SSIM result  (c) MS-SSIM result 

Fig. 3. Objective performance calculation by different 
search strategies and search ranges. 

Fig. 4. Objective performance comparison of the proposed 
method and the reference technique of [8]. 



 

(a) Original occlusion regions. 
 

(b) Inpainting result obtained with MPEG VSRS 3.5 [17]. 

 
(c) Inpainting result obtained with [8]. 

 
(d) The proposed algorithm. 

Fig. 5. Inpainting results obtained with the proposed method and the reference techniques of [8] and [17]. 
 

6. CONCLUSIONS 

We have presented a new approach for performing depth-
based inpainting in multiview video. Our solution performs 
PatchMatch-based multilevel pixel-level inpainting 
employing candidates search and patch matching. An 
improved similarity measure for patch matching is 
introduced. Different search strategies and search ranges 
have also been investigated in the proposed framework. 
Experimental results reporting both subjective and objective 
evaluations show that the proposed inpainting algorithm can 
efficiently generate stable synthesis results. 
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