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ABSTRACT

Multiview video is becoming increasingly popular as the format
for 3D video systems that use autostereoscopic displays or free-
viewpoint navigation capabilities. However, the algorithms that
drive these applications are not yet mature and can suffer from
subtle irregularities such as color imbalances inbetween differ-
ent cameras. Regarding the problem of color correction, state-
of-the-art methods directly apply some form of histogram match-
ing in blocks of pixels between an input frame and a target frame
containing the desired color distribution. These methods, how-
ever, typically suffer from artifacts in the gradient domain, as
they do not take into account local texture information. This pa-
per presents a novel method to correct color differences in mul-
tiview video sequences that uses a dense matching-based global
optimization framework. The proposed energy function ensures
preservation of local structures by regulating deviations from the
original image gradients.

Index Terms — multiview video, color-correction, optical
flow, Laplacian matrix optimization, structure preservation

1. INTRODUCTION

Multiview video has the capability of delivering a much more im-
mersive multimedia experience compared to simple 2D or stereo-
scopic 3D by offering both 3D through stereopsis and 3D by mo-
tion parallax. New and exciting autostereoscopic and free view-
point technologies are being developed and will soon be ubiq-
uitous in the modern multimedia landscape. The main problem
that is hindering the acceptance of these technologies is the fact
that content acquisition and delivery systems are lagging behind.
The required 3D content is captured using multi-camera setups
which calls for efficient synchronization, calibration and compres-
sion methods. Moreover, capturing a scene with eighty cameras
or more (which is what is being done in current exploratory exper-
iments) is overkill when having to transport and serve this data at
remote locations. Even state-of-the-art compression such as 3D-
HEVC has a hard time coping with the enormous amount of data
produced by the cameras. A solution to this problem is to per-
form acquisition using only a sparse set of capturing cameras and
to synthesize additional views based on a few originals. However,
sparsifying the camera setup might be associated with substantial
color differences between neighboring cameras, originating from
complex scene materials or miscalibration. This in turn can further
impede compression and view synthesis which are already chal-
lenging on their own. Moreover, studies have shown that subtle
color differences in stereo or multiview content can cause visual
fatigue and binocular rivalry [1, 2]. For this reason it is desirable
that automated algorithms can deal with such color differences.

Popular techniques for color correction perform global or block-
based histogram matching [3–5]. Histogram methods are however
generic, do not take structural information into account and there-
fore, do not ensure its preservation after color correction is per-
formed. In [6], in order to preserve structural information, sparse
SIFT keypoints are extracted and color-correction is performed in
an averaging manner per region of a segmentation of the origi-
nal image. [6] shows that correspondence-based color correction
can lead to good results but the method works locally and is not
very robust to wrongly matched SIFT points. In this paper we
present an extension of our previously proposed color correction
method [7] which also performs color correction based on corre-
spondences but in combination with a global optimization step.
In [7], we compute sparse correspondences between an input and
a reference camera view and between the input view and the previ-
ous color corrected frame. In order to have a one-to-one mapping
between input pixels and a reference set, we complete the map-
ping by using a histogram corrected input as another reference.
Based on these correspondences, new pixel values are assigned
according to the minimization of an energy function that regulates
deviations from the original image structures. In this paper, we
demonstrate that our framework can further benefit from dense
correspondence matching by means of optical flow-based corre-
spondences. Our color correction performs dense matching in the
temporal dimension as well as sparse SURF matching across cam-
eras and the output is given by the minimization of an energy func-
tion which is efficiently computed due to the sparse nature of the
resulting linear system.

2. PROPOSED METHOD

A schematic representation of the proposed framework is depicted
in Figure 1. It is based on our previous work [7] with the addition
of dense optical-flow based correspondence matching. Histogram
matching is only used for the very first frame and for the remainder
of the sequence, dense optical flow and sparse SURF (Speeded
Up Robust Features) [8] matching are used. When depth maps are
available, denser inter-camera matching is also possible by means
of view synthesis.

2.1. Energy formulation

We aim to compute optimal colors for the pixels in the input view
taking another view as reference. Additionally, we want to pre-
serve the original textures and structures as much as possible. To
achieve this, we pose the problem as an optimization problem,
namely:

E = Ed + βrEr (1)

În = argmin
I

(E) (2)



Figure 1. The generic framework describing the proposed multiview video color correction algorithm.

The total energy given by Equation (1) consists of a color consis-
tency (data) term Ed and a structure preservation (regularization)
term Er which are balanced by the parameter βr .

Color consistency. The data term Ed expresses that the color
in the target frame În should be as consistent as possible to the
color in an intermediate image Ĩ which is constructed based on
correspondences between the input image In and a reference set
of known images R = {Rn, In, In−1, În−1}, where Rn is the
current reference frame, In is the current input frame, In−1 is
the previous input frame and În−1 is the previous color-corrected
frame. The construction of Ĩ will be explained later. Using this
image, we express the data term as:

Ed =
∑

u

(
I(u)− Ĩ(u)

)2
(3)

Structure consistency. In order to avoid distortions in the
processed structure and textures, we impose a constraint on the
gradient of the color correction result. We state that de gradient
of this output should remain as close as possible to the original
gradient:

Er = ||~∇I − ~∇In||2 (4)

Using finite differences and matrix-vector notations, we rewrite
this energy as:

Er = (DxI −DxIn)T (DxI −DxIn)

+(DyI −DyIn)T (DyI −DyIn)
(5)

where Dx and Dy denote the forward discrete differentiation op-
erators and (·)T is the transpose operator. Note that 2D-images
are linearized to be represented as anN -dimensional vector rather
than a matrix. All matrices are therefore of size N ×N . With this
structure consistency term, we impose that correspondence match-
ing between any image x and the input In should be the same as
the matching between x and În. Such matching is generally done
based on gradient and luminance information and therefore invari-
ant to the color correction.

2.2. Energy minimization

In order to minimize the proposed energy function in (1), we em-
ploy correspondence modeling and filtering followed by an effi-
cient solver for Laplacian matrix inversion.

Correspondence modeling. The intermediate image Ĩ is built
from the reference setR using the following classes of image-wise
correspondences:

1. temporal matching between consecutive frames in the out-
put camera

2. spatial matching between the input/output and reference
frames

The first mapping relation describes the color consistency in the
temporal direction of the input view. The second class describes
the color consistency between different camera views. In our
previous work [7], we performed correspondence matching us-
ing SURF [8] and Fast Approximate Nearest Neighbor matching
which only yields a sparse set of pairwise correspondences. In or-
der to have a complete mapping between the input In and the inter-
mediate image Ĩ , we also needed to map pixels of In to co-located
pixels of a histogram-corrected version of In. We now remove this
dependency by performing dense matching in the temporal direc-
tion by means of optical flow. We use the Simply Flow algorithm
of [9] as implemented in the OpenCV library. In the very first
frame we however still initialize our framework as in [7].

We now explain the construction of the intermediate corre-
spondence image Ĩ . We assume that pixels u ∈ In have corre-
spondences in either In−1 or Rn. We say that p(u,v) ∈ ψt if
pixel u corresponds to pixel v in the previous frame In−1. Sim-
ilarly, we say that p(u,v) ∈ ψc if pixel u corresponds to pixel
v in the other camera Rn. Built on these correspondences, we
construct an image Ĩ as follows:

Ĩ(u) =

{
In−1(v) + αn(u,v), if p(u, v) ∈ ψt
Rn(v) + τn(u,v), if p(u, v) ∈ ψc

(6)

where αn(u,v) is the original color difference between In(u) and
In−1(v) and τn(u,v) can be a color transistion model between
the two cameras, which we put it to zero for simplicity. When
also assigning weights βt and βc to these correspondences, we
can write (3) as:

Ed = βt
∑

p(u,v)∈ψt

(
I(u)− În−1(v)− (In(u)− In−1(v))

)2
+βc

∑
p(u,v)∈ψc

(I(u)−Rn(v))2

(7)



Figure 2. Proposed forward-reverse color correction evaluation.

Global optimization. We want to minimize the total energy
given by equations (1), (5) and (7). We therefore introduce a di-
agonal matrix W = βr1N and another diagonal matrix Q defined
as:

Q(u, u) =

{
βt if p(u, v) ∈ ψt
βc if p(u, v) ∈ ψc

(8)

Using Q and Ĩ , we can write (7) more compactly in matrix-vector
notation as:

Ed =
(
I − Ĩ

)T
Q
(
I − Ĩ

)
(9)

To obtain În which is the image I that minimizes the total energy
function, we solve dE/dI = 0. The solution can be found by
solving the following linear system:[

Q+DT
xWDx +DT

yWDy
]
În =

QĨ + (DT
xWDx +DT

yWDy)In,
(10)

where DT
x and DT

y are backward discrete differentiation opera-
tors. Remember that all matrices are of size N × N where N is
the number of pixels. At common video resolutions, the inhomo-
geneous Laplacian matrix on the left hand side easily becomes a
few hundreds of gigabytes, which is impractical to fully hold in
memory. The matrix however is sparse and symmetric positive
definite so efficient solutions exist in the literature. We opt for Hi-
erarchical Sparsification and Compensation [10] which has a low
operation count and wall-clock time. The method greatly reduces
the matrix’ condition number to efficiently solve the problem.

3. EXPERIMENTAL EVALUATION

Because in the area of multiview color correction no ground truth
data exists we employ a so-called forward-reverse evaluation [7].
This means that we color correct an image I to match a reference
R and this corrected image Î , we further process in order to give it
back the original colors of I . This way we can compute objective
metrics such as Peak Signal to Noise Ration (PSNR) and Structure
SIMilarity (SSIM) in order to evaluate the quality of our results.

We performed the experiments on the Objects2 and Flamenco2
multiview sequences. Both sequences consist of frames at resolu-
tion 640 × 480 stored in the YUV420 format and results on a
frame of both are shown in Figure 3. As is clear from the fig-
ure, there is a significant color imbalance between the two camera
views. We employ both our previous method [7] and the proposed
method as well as histogram matching [3] in order to correct color
differences between the selected camera views. In our implemen-
tation, we perform the computations separately on the three color
channels in YUV444 space.

In Fig. 4 we show the SSIM metric computed between the
color corrected frames and the original inputs as well as the PSNR

input frames

reference frames

color correction result
Figure 3. Visual results on the Objects2 (left) and Flamenco2 (right) mul-
tiview video sequences.

values in the forward-reverse framework of Fig. 2. We can clearly
see that the introduction of dense optical flow matching has not de-
teriorated the color correction algorithm. In fact, not much differ-
ence is visible in objective quality terms. However, it is important
to point out that our previous method only relied on sparse feature
matching and on histogram matching as a side information. By
incorporating dense temporal matching by means of optical flow,
we show that the proposed energy formulation and optimization
method remain valid. In Fig. 5, the difference between the pro-
posed method and our earlier work [7] is plotted. While the PSNR
differences are inconclusive, the SSIM difference is overall posi-
tive however small. It is also worthy to point out that the SSIM
values of both our methods that penalize large deviations from
the original gradients remain more consistent over time compared
to the classical histogram matching where there are much more
fluctuations. Finally, the calculation of the optical flow does sig-
nificantly increase the computational complexity. For a more de-
tailed discussion about the complexity of our energy-based color
correction framework, please refer to our previous work [7]. It is
however important to point out that the proposed method is very
flexible in terms of quality-complexity trade-offs as different com-
ponents can be optimized individually and the choice for sparse of
dense matching can be made in function of the target application.

4. CONCLUSIONS

This paper introduces a novel method to correct for color differ-
ences in multi-camera setups. We demonstrate that the colors in
an input video can be efficiently altered in order to match the col-
ors of some reference camera while preserving the original lo-
cal structure and texture information and without introducing ar-
tifacts. With this work we extend our previous method that per-
formed sparse SURF matching followed by global optimization.
We show that our framework can benefit from dense optical flow-
based matching and in general that the quality of the color correc-
tion result can be further improved by providing as dense and as
accurate correspondences as possible. Part of the research leading
to this publication was performed in the High Tech Visualisation
research program (HiViz) of iMinds.



(a) Objects2 (b) Flamenco2

Figure 4. Objective evaluation. The lower line (red) indicates the result from traditional histogram matching [3] while the two top lines (blue and green)
are the results from [7] and the proposed method, respectively.

(a) Objects2 (b) Flamenco2

Figure 5. Difference plot.Because the lines in Figure (4) are too close to distinguish we also plot SSIM and PSNR differences between the proposed
method with dense optical flow matching and our previous work [7].
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